FAKULTAT
FUR INFORMATIK

Faculty of Informatics

Proof of Concept of Hacking
Cryptocurrency Hardware Wallets

BACHELORARBEIT

zur Erlangung des akademischen Grades
Bachelor of Science
im Rahmen des Studiums
Medieninformatik und Visual Computing
eingereicht von

Markus Reichel
Matrikelnummer 01529191

an der Fakultat fir Informatik
der Technischen Universitat Wien

Betreuung: Privatdoz. Mag.rer.soc.oec. Dipl.-Ing. Dr.techn. Edgar Weippl
Mitwirkung: Univ.Lektor Dipl.-Ing. Dr.techn. Adrian Dabrowski

Wien, 3. Mai 2019

Markus Reichel Edgar Weippl

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 - www.tuwien.ac.at

FAKULTAT
FUR INFORMATIK

Faculty of Informatics

Proof of Concept of Hacking
Cryptocurrency Hardware Wallets

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science
in
Media Informatics and Visual Computing
by

Markus Reichel
Registration Number 01529191

to the Faculty of Informatics
at the TU Wien

Advisor: Privatdoz. Mag.rer.soc.oec. Dipl.-Ing. Dr.techn. Edgar Weippl
Assistance: Univ.Lektor Dipl.-Ing. Dr.techn. Adrian Dabrowski

Vienna, 3 May, 2019

Markus Reichel Edgar Weippl

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 - www.tuwien.ac.at

Erklarung zur Verfassung der
Arbeit

Markus Reichel
Brinner StraBe 111-113
2201 Gerasdorf bei Wien

Hiermit erklére ich, dass ich diese Arbeit selbstéindig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliefSlich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 3. Mai 2019

Markus Reichel

Kurzfassung

Um Kryptowédhrungsbestédnde zu sichern bedarf es an Langzeitsicherheit. Viele Hardware-
Cryptocurrency-Wallets wurden daraufhin entwickelt, da diese eine Moglichkeit anbieten,
den privaten Schliissel offline aufzubewahren. Diese Arbeit ist in zwei Teile geteilt. Die
erste Halfte analysiert fiinf bestehende Wallets in ihrer Software- und Hardwaresicherheit
und Attestation-Methoden. Danach wird eine Klassifikation bereits bestehender Attacken
von diesen Wallets présentiert.

Die zweite Hélfte zeigt einen Proof-of-Work eines Supply-Chain-Angriffs, bei dem ein
USB-Gerit ein solches Hardware-Wallet emuliert und das Opfer dazu bringt, sein Kryp-
tovermogen an den Angreifer zu {iberweisen. Es zeigt sich, dass die Wallet-Software der
Hardware zu sehr vertraut und so ein Wallet emuliert werden kann. Deswegen fehlen den
Geréten immernoch wichtige Attestations.

vii

Abstract

Securing cryptocurrency funds require long-term safety. A lot of hardware cryptocurrency
wallets were developed, because they offer a way to store the private key offline. This
thesis is split up in two parts. The first half analyzes five existing wallets in terms of
their software and hardware security design and attestation methods. Then, it presents
a classification of exiting attacks for these wallets.

The second half provides a proof of a work of a possible supply chain attack by emulating
a hardware wallet on a USB device and tricking the victim into sending his funds to the
attackers cryptocurrency account. It proves that wallet software puts too much trust in
the hardware and that such a hardware wallet can be emulated. Therefore, the devices
are missing important attestations.

ix

Kurzfassung

Abstract

Contents

1

2

Introduction

Background
2.1 Cryptocurrency Wallets|
2.2 Hardware Security Basics| oo,
2.3 Hardware Wallets/.
2.4 Universal Serial Bus (USB)

Related Work

Methology
4.1 Methology of the Security Feature Review
4.2 Methology of the Proof of Concept

Contents

Market Review of Hardware Wallet Security Features

General Overview L
Attestation Methods
Wallet Initializationl,
Existing Vulnerability Classification|

0.1
0.2
9.3
0.4
9.9

Discussion

Proof of Concept

Configuring the USB Armory,
Sniffing the USB Protocol
Implementation of the Fake Wallet,
Final Attack Vector

6.1
6.2
6.3
6.4
6.5

Discussion

vii

ix

xi

N O~ W W

11

13
13
13

15
15
16
19
20
22

23
23
23
25
32
32

X1

7 Future Work
8 Conclusion

Bibliography

33

35

37

CHAPTER

Introduction

In 2008, a whitepaper [I] from a person with the pseudonym "Satoshi Nakamoto" ap-
peared in the internet about the design of the cryptocurrency Bitcoin. Shortly after
that, in 2009, the first Bitcoin Software came available [2]. Since then, decentralized
cryptocurrencies such as Bitcoin are rising in terms of popularity and acceptance [3],
regardless of a lot of up and downs. Also, multiple hundreds of such cryptocurrencies
were developed. With their increasing use, also the security characteristics were getting
more important. Cryptocurrencies rely, as the name says, on cryptography, and in order
to do transactions, a user needs to authenticate with his private key.

In the beginning, special software called "wallets" was developed to be responsible for
storing the private key and managing it, but recently, more and more companies are
developing hardware wallets, which are physical devices [4]. The idea behind them is
that if the PC is compromised, important parts of the pay process are still done in the
supposedly safe hardware.

However, this does not solve all security relevant problems, because a physical device
can also be manipulated or stolen. Therefore, these devices must also be evaluated in
terms of security proficiency. This bachelor thesis will first investigate security properties
of the most prominent solutions in the cryptocurrency hardware wallet market. Then,
we will create a proof of concept to show that cryptocurrency hardware wallets can be
hacked when gaining physical access of the device.

1. INTRODUCTION

In in this work, the following scenario is evaluated:

The victim gets a fake device from a supply chain attacker, e.g., a flash drive sized
computer like the USB armory [5], which speaks the protocol of the host application over
USB. Within this scenario, the following questions arrive:

1. Is it possible to emulate a hardware wallet on a USB armory?

2. Would the victim notice the attack?

In order to implement the fake device which should disguise itself as a hardware wallet,
information about the specific implementation of the protocol of the wallet was collected.
We compare the existing work where such wallets got compromised with each other.
Papers and blogs regarding the protocol for some vendors already exist (see Section 3).
If it is not information about the protocol, it has to be reverse engineered with a sniffer
for the USB traffic.

CHAPTER

Background

In order to work in the field of cryptocurrency hardware wallet security, understanding
several fundamental concepts of such a system is essential. Therefore, this section will
contain a broad sprectrum of topics necessary to understand the basics of a wallet.

2.1 Cryptocurrency Wallets

Cryptocurrencies like Bitcoin use asymmetric cryptography to control the access of the
money. The coins are not stored as a plain amount but in a huge series of blocks of
transactions, called a blockchain. With this, the public key acts like a receiver address of
a transaction, like an IBAN. However, the public key can only be used to receive money
or follow the transactions, because only with the private key, a transaction can be signed
right to send money, similar to a nearly ideal manual signature. Therefore, in contrast to
the public key, the cryptocurrency owner has to protect the private key because getting
this key is synonymous with getting control over all the money of this account. There
are several ways to store such a private key. In this work, we differentiate between hot
and cold wallets [0].

2.1.1 Hot Wallets

Hot wallets are typically software wallets running on a device connected to the internet
like a PC or a smartphone. With web wallets (see Figure 2.1), the private keys are stored
on the servers of the provider, so one needs special trust in the company running those
services. In terms of security, hot wallets all share the risk that the private key can
be compromised over the internet. When e.g. the database of a cryptocurrency online
exchange gets hacked, all of the customers’ private keys are leaked. It is recommended to
use hot wallets like a purse, particularly to not store a huge amount in one wallet.

2. BACKGROUND

Accounts

Account Address Balance

Earnings 2 BR 1JCLWTewhv2aHvetUs4284unoak XaftzW [Send Bitcoins =

Day to Day Spending BR 1JcLWTewvzaHvetUc4284unoak Xaftzw 0.006 oo =
Please verify you can decode the private key for this address before using it.

Secured Vault R TICLWTewWi2aHveCUs4284unnak Xciftzw 0.006 oo =
Please verfy you can decode the private key for this address before using it

Earnings 1 B 1JCLWTewWv2aHveCUc4284unoakXciftzw 0.006 0 EEEEIEGE &
Flease verify you can decode the private key for this address before using it.

Test BE 10931 woYKHeogedN4zRUKSvitoFe TPKPFS 0.0 o -1

Total 0.02400 (518.19)

@ Copyright 2011 - 2016 StrongCoin.com all rights reserved

Figure 2.1: The web inteface of strongcoin, a hot wallet [7].

2.1.2 Cold Wallets

Cold wallets are not connected to the internet and can be used to deposit the money.
Just writing the private key on a paper ("paper wallet") to lock it up in a safe is the
simplest example. Also special hardware wallets (see Figure 2.2), devices which store the
private key offline, fall under this category. When the attacker has no physical access to
the device, the only risk of getting hacked is when the hardware wallet is connected to a
computer. There are several approaches to make a hardware wallet secure, some devices
strive for openess of the system, while e.g. Ledger builds wallets where the private key is
stored in a closed secure element [4]. Section 5| will give a more detail overview of the
different security approaches.

2.2 Hardware Security Basics

The main goal of a hardware cryptocurrency wallet is to protect the private key. In order
to analyze its security, it is necessary to go into detail about their architectures and
attestation methods.

2.2.1 Hardware Security Architecture

Most modern cryptocurrency hardware wallets are build with a common architecture.
They are embedded systems, in their cores consisting of a microcontroller. Rather than a
microprocessor, a microcontroller unit (MCU) today is a system-on-a-chip solution with
RAM and ROM together on the same chip with the arithmetic logic unit (ALU) and other

2.2. Hardware Security Basics

Figure 2.2: The Trezor Model T, a cold wallet [§].

peripherals such as clocks and signal generators. Coprocessors to speed up cryptographic
algorithms are also popular. The firmware, which is how the software running on the
microcontroller is called, communicates over an interface (mostly USB). On the host side,
software on the PC receives the data and processes it further. The two main computer
architectures are von Neumann, where data and instructions share the memory space,
and Harvard, where data and instructions are seperated. Harvard offers more protection
against so called "micro-probing" attacks [9], where the CPU is interrupted and data
can be read from the data bus. It is possible to use debugging interfaces to extract and
manipulate the firmware, so designers try to hide or remove them. Companies also make
the housing tamper-resistant with coatings or encapsulations, for example with epoxy.
However, for an attacker, it is technically possible to open the casing to decap microcon-
troller and memory chips to read out the data [9]. Other attacks like fault attacks where
the supply voltage is manipulated to skip logic in the firmware or side-channel attacks
where a channel like the voltage leaks critial information also exist. For this reason,
secure elements were developed. They are designed to contain confidential data like
cryptographic keys or IDs and to be tamper-resistant. A wide-known example of secure
elements are smartcards, which are widely used in the fields of telephony, passports, pay
TV and banking. These contain mechanisms such as light sensors to detect chip openings,
an obfuscated layout and are designed against side channels and fault detection. The
common criteria (CC) [10] framework aims to evaluate products in terms of security,
with a rating ranging at the beginning from EAL1 to EALT at the end (with an optional
+ for higher features). Typical smart cards are classified as EAL4+. Section 5 contains a
table with the security certifications of the hardware wallets.

2.2.2 Remote attestation

To create a secure enviroment where manipulation can be detected, one can use hardware
and software mechanisms to create a concept called remote attestation, which etablishes

2. BACKGROUND

trust in a device. Attestation defines a verifier, who verifies the state of a prover over an
attestation protocol [II]. There are three remote attestation types [12]:

1. Hardware-Based Remote Attestation: The hardware supports protecting keys and
summarizing the state of the system as a hash, often realized as a Trusted Plaform
Module (TPM).

2. Software-Based Remote Attestation: Witout any additional hardware it is possible
to develop checksum algorithms which include run-time side-effects for attestation.

3. Hybrid Remote Attestation: This attestation uses hardware and software approaches
together in order to get the advantages from both (e.g. get immutability via read-
only memory from the hardware and exclusive resource access control via a formally
verified firmware).

Adversary models on remote attestation are: (i) remote adversaries, (ii) local adversaries
and (iii) physical adversaries. Remote adversaries attack the software of the platform via
injecting code in the network, while local adversaries are capable of manipulating and
sniffing the communication channel of the prover. Physical adversaries have full access
to the hardware of the device and use side channels or physical memory extraction to
manipulate it. Remote attestation is mainly able to deflect type i and ii of adversaries,
while tamper-resistant methods mentioned in Section [2.2.1 target type iii. The focus of
our proof of concept is a supply chain attack, therefore, we choose the physical adversary
as our model.

2.3 Hardware Wallets

In Section 2.1.2, we classify hardware wallets as cold wallets. They store the private
key in their memory, either on a normal chip or a secure element (see Section [2.2.1).
Access to it is easier to control in contrast to a software wallet, because every interaction
with the wallet goes over the USB port and is controlled by various types of attestations.
Regarding the workflow, after purchasing a hardware wallet, it must first be setup in
order to make transactions.

2.3.1 Setup

Hardware wallets always have to be initialized before usage. In addition to general
information such as the device name, important information like the cryptocurrency
account has to be generated on the device. It depends on wether the new wallet comes
with shipped firmware or needs software and an internet connection for initialization,
but in general it will generate a random seed phrase with a procedure standardized in
Bitcoin Improvement Proposal 39 (BIP39) [I3]. The words contained in this phrase are
mnemonics, which can together with an optional passphrase be converted into a binary

2.4. Universal Serial Bus (USB)

seed used to create a deterministic wallet. Therefore, a mnemonic phrase can also be
used to backup an existing wallet, assuming that the words are written down when they
were shown at setup.

2.3.2 Transactions

After that, the user can send cryptocurrencies with the hardware wallet. An advantage
of the asymmetric cryptography is the fact that the private key never has to be revealed
by the hardware wallet. The host can build a transaction and send it to the wallet, which
signs it with the key and then sends the signed transaction back to the host. The host
is now able to send the signed transaction to the cryptocurrency network without the
knowledge of the private key.

2.4 Universal Serial Bus (USB)

Every in this thesis evaluated hardware wallet uses the Universal Serial Bus (USB) to
communicate with the host computer. Simply put, USB [14] is a serial bus system where
the communication works asymmetrically. The computer acts as the host part who issues
requests and the device acts as the device part, answering those.

2.4.1 Protocols

It was already mentioned that the USB protocol is host-centric, which means that the
so called USB transactions are initiated from the host. USB uses four types of lowlevel
packets: (i) token packets which act like headers, (ii) data packets which contain the
payload, (iii) handshake packets used for transaction logic and (iv) start-of-frame packets
for the synchronization of the transmission. However, when writing software for USB, a
programmer will typically not get in touch with these packets because the hardware (in
case of a PC the so called USB host controller) already handles these lowlevel messages.
Still, a lot of devices rely on a protocol stack with multiple layers, e.g. the hardware
wallet Trezor One uses the USB HID (Human Interface Device) - protocol to implement
the wallet-specific commands.

2.4.2 Endpoints

Endpoints are a central concept in USB, as they allow a single physical connection to be
split up logically. They are like a device-side socket like in TCP/IP. It is very common
that a USB device offers multiple endpoints, e.g., the Trezor One offers one endpoint for
the regular communication and one endpoint for two-factor-authentication. An example
endpoint configuration is shown in Figure 2.3. As the bus is host-controlled, the device
cannot send something over the bus by itself, therefore, there is a seperate in and out
buffer for every endpoint.

The communication between the host and an endpoint is called pipe. As described in
Section [2.4.1], the lowlevel packets are not important from a programmer’s perspective,

2.

BACKGROUND

but the higher-level USB pipe has, in addition to parameters like maximum bandwidth
per pipe, the so called transfer type. With this, an endpoint can have four different

transfer types:

1. Control Tranfers: This transfer-type is used for commandlike messages or status

updates.

2. Interrupt Transfers: As the name says, they deliver device data to trigger interrupts.
Input devices like mice and keyboards use them.

3. Isochronous Transfers: Here, the packets are sent continuously in a constant interval.
Video and audio streams are example applications.

4. Bulk Transfers: These are used to send big chunks of data, e.g. printer jobs.
Error-checking is used to ensure the integrity.

Haost

L

[Addr[Endpaint][Direction]

Bus

- - -"-"—-"-—--—-_- - —_ - —_ - —_ = - = "= " - - _'l

| USB Device

EFD Qut |—

Addr=2 by Function

EF1In -
—— EF10Out

luse Davics | e e

Addr=2

I

I

i by Function
, —| EFM1 Out [—m

I

| e
I

l —

Figure 2.3: Logical view of a host connected to two devices (in USB called "functions").
Every function has multiple endpoints [14].

2.4.3 Descriptors

Especially in case of USB, there are many different types of devices which have a variety
of different functions (device classes). When a USB device is plugged into the computer,

I
I
| - __.___. —

2.4. Universal Serial Bus (USB)

the operating system needs a way to identify not only the device but also the capabilities
and the protocols it uses. This is implemented with the USB descriptors; they form a
hierarchical network of information about the device which can be retrieved from the host.
Hardware manufacturers have to ensure that the device responds with these descriptors.

1. Device Descriptors: contain general information about the device like the name,
device class and manufacturer.

2. Configuration Descriptors: used to configure power consumption and get the number
of interfaces.

3. Interface Descriptors: describe multiple endpoints bundled together into one logical
interface.

4. Endpoint Descriptors: contain endpoint information like transfer type and address.

5. String Descriptors: are optional, but add human-readable information about the
device into the description.

6. Report Descriptors: It is used if the USB device is a HID device. In order to reduce
the amount of drivers the operation system has to provide, the USBHID protocol
provides report descriptors to describe the message format used by HID devices.
For example a mouse report descriptor contains information how the two buttons,
the wheel and the x/y speed is sent.

CHAPTER

Related Work

Recently, Roth et al. [I5] gave a talk about several cryptocurrency hardware wallet
vulnerabilities. The explained a wide range of attacks, from side-channel attacks and
fault attacks to lowlevel attacks. The proof of concept in this work reverse engineers
and emulates the Trezor One low-level protocol. Similar work has been done for the
Ledger Nano and Ledger Nano S. Gkaniatsou et al. [16] showed that low-level protocols
of hardware wallets (in this case Ledger devices) can be attacked. They analyzed the
Ledger-specific protocol, categorize and explained possible attacks and then offered fixes
for the protocol. Other related work includes attacks on the cryptocurrency protocols
itself and attacks on embedded systems which are similar to hardware wallets. Datko et
al. [I7] presented in a talk at DEF CON 2017 that the similar architecture that Trezor
and Keepkey hardware wallets share is vulnerable to fault attacks (in the presentation
also called "glitches") which can be used to skip critical code sections such as password-
checking routines.

But before cryptocurrency hardware wallets were analyzed in terms of security, a lot
of work on attacking cryptocurrencies itself such as Bitcoin was done. The big Bitcoin
exchange MtGox filed for bankruptcy [I8] after beeing attacked with the so called
transaction malleability, which made it possible for a user to issue a withdrawal while
making the exchange belief that the transaction failed, which resulted in a double
withdrawal. Rosenfeld [19] analyzed the possibility of double spending with hash-based
attacks. The danger of double spending was also already mentioned in the initial
Nakamoto whitepaper [I]. An example for another cryptocurrency and another attack
vector is the work of Atzei et al. [20], who did a survey on attacks on Ethereum smart
contracts. Ethereum introduced this small programs which should be executed in a
network containing mutually untrusting nodes, however, the platform contained several
security vulnerabilities.

In the hardware security field, there is a wide selection of attack approaches available.
General vulnerability reviews such as the one from Dalton et al. [2I] looked at known

11

3. RELATED WORK

threats such as buffer overflows, format string attacks and information disclosure to
discuss the effectivity of novel hardware architectures against these. Roland et al. [22]
introduced attacks against platforms with secure elements, in this case secure elements
on smartphones, which are attacked via NFC. In the end, they were able to not only
perfom a denial of service (DoS) attack against the secure element, but also remotely use
the element without knowledge of the victim.

12

CHAPTER

Methology

The work of this thesis is split into two parts, a market review of hardware wallet security
features to get an overview about hardware wallet security, and a specific proof of concept
(PoC) to show weaknesses in the security model.

4.1 Methology of the Security Feature Review

Before a specific proof of concept was implemented, classification of the field of hardware
cryptocurrency wallet security was needed. We did not only need know about the
architecture of prominent wallets and their security approaches, but also about existing
attacks to get an understanding of common attack vectors. Literature research was the
primary method to gather information about the wallet architecture. Especially in the
blogs of the individual companies, information about existing vulnerabilities could be
found, which were then classfied in terms of type. After that, the wallets were initialized
and analyzed hands-on in order to get their attestation methods and outer security
mechanisms. Important differences between the wallets could be summed up in tables.

4.2 Methology of the Proof of Concept

With the finished review, we decided for which wallet the proof of concept is going to be
implemented in order to demonstrate further vulnerabilities with hardware wallets. The
hardware wallet approach assumes that the PC software should not be trusted, but this
does not justify that the hardware can be trusted. This resulted in the goal to emulate a
hardware wallet. The emulation is build on a USB stick with software capabilities of a
full computer, because one can profit from the rich software libraries and tools available.
Therefore, a flash drive sized computer was used. This malicious wallet had to show
a fake cryptocurrency address to trick the victim into sending it to the evil account.
Because wallets communicate over USB, a full USB stack had to be emulated. The proof

13

4. METHOLOGY

of concept could be easily verified by checking if the software thinks a wallet is plugged
in and the malicious address works as described.

14

CHAPTER

Market Review of Hardware
Wallet Security Features

Before the proof of concept was implemented, research about the five hardware wallets was
done. After creating a basic overview, the attestations in respect of the different wallets
were examined from hardware to software and then, the unpacking and initialization
procedures of the wallets were analyzed. In the end, already known security holes were

collected and classified.

5.1 General Overview

Five hardware wallets were chosen for the study, which were seen as the most prominent
devices. The selected wallets were: (i) Trezor Model One, (ii) Trezor Model T, (iii)
Keepkey, (iv) Ledger Nano S and (v) Ledger Blue. The openess of the platforms can be
seen in Table |5.1. These wallets have very different hardware characteristics, as seen in

Table 5.2.

Fully Open Source | Software | Firmware | Hardware
Trezor One yes yes yes
Ledger Nano S yes no no
Keepkey yes yes no
Trezor T yes yes yes
Ledger Blue yes no no'

1 Only development version: https://github.com/LedgerHQ/blue-schematics,

Table 5.1: Openess of the platforms [23] [24].

15

https://github.com/LedgerHQ/blue-schematics

d.

MARKET REVIEW OF HARDWARE WALLET SECURITY FEATURES

16

Architecture Microcontroller | Secure Element | Certifications
Trezor One [25] STM32F205 n/a n/a

Ledger Nano S [4] | STM32F042K ST31H320 CC EAL 5+
Keepkey [26][27] | STM32F205RGT6 | n/a Eig ggg 1:8;
Trezor T [25] STM32F427VIT6 | n/a n/a

Ledger Blue [4] STM32L476 ST31G480 CC EAL 5+

Table 5.2: Architectural overview: microcontrollers and certifications.

5.2 Attestation Methods

Regarding the attestation, the packaging and hardware was observed, and on the websites,
information about the firmware and software attestations were gathered. Note that Ledger
states that hologram stickers are just a 'false impression of security" because they can be
easily duplicated [28].

5.2.1 Packaging

In the beginning, the packaging of the wallets was inspected by ourselves (see Table 5.3).

Verified by User

Two hologram stickers,

sealed with strong glue. Plastic foil on the device.
No special sealing.!

Packaging

Trezor One

Ledger Nano S

One hologram sticker,

package tampering is barely visible.? Plastic foil on the device.
One hologram sticker on the

USB port of the device.

No special sealing.!

Keepkey

Trezor T

Ledger Blue

L Company says that it does not need temperevident packaging because of its strong device security.
2 The package can be closed again and the indicator that it has been openend is only barely visible.

Table 5.3: Shows how the devices were shipped to the customer.

5.2. Attestation Methods

5.2.2 Hardware

Then, the hardware attestations of the devices were gathered (see Table 5.4).

Hardware Verified by User
Plastic, ultrasonically
welded to be tamperproof.

Trezor One

Plastic, users can verify

Ledger Nano S | the integrity of the hardware with images of
the printed circuit board (PCB) online.
Anodized aluminium case,

build to be tamperproof.

Keepkey

Plastic, ultrasonically

T T
rezot welded to be tamperproof.

Plastic and aluminium. Users
Ledger Blue should verify the integrity of the hardware with images of the PCB
online, there are no pictures of the PCB!

Table 5.4: Shows how the casings are protected.

5.2.3 Bootloader

Every device needs to check the autenticity of the bootloader with their security model
(see Table 5.5).

Bootloader Verified by Firmware Verified by Secure Element
Authenticity is checked
by the firmware via a SHA256 hash.

Trezor One n/a

Checks the authenticity.

Ledger Nano § | n/a Also times sending.

Authenticity is checked
by the firmware via a SHA256 hash.
Authenticity is checked
by the firmware via a SHA256 hash.

Ledger Blue n/a

Keepkey n/a

Trezor T n/a

Checks the authenticity.
Also times sending.

Table 5.5: Shows how the bootloader is checked.

17

d.

MARKET REVIEW OF HARDWARE WALLET SECURITY FEATURES

18

5.2.4 Firmware

The firmware is one of the critical parts

and has a lot of attestation methods (see Table

5.6).
. . Verified by Verified by Verified by
Firmware Verified by User Bootloader Software Secure Element
Not shipped with firmware.! | Checks the ‘Tvgﬁe?ceﬁgcrks
Trezor One Optlona.l PIN (1-9 digits) signature the signature n/a
and optional passphrase. (signed by (signed b
Default: 24-word recovery. SatoshiLabs). SatoshiLaybs).
Ledger live
. hecks the Checks the
PIN (4-8 digits) < e
Ledger Nano S | and optional passphrase. n/a (S)lfg?}?gléiiure i}llé}benct;g;y of the
Default: 24-word recovery. element firmware Also times sending.
(signed by Ledger).
The Keepkey
Optional PIN (1-9 digits) ggﬁglgirtehe app checks
Keepkey and optional passphrase. (signed b the signature n/a
Default: 12-word recovery. Ke%e ke)y (signed by
prey)- Keepkey).
Not shipped with firmware.? | Checks the ;Fvgﬁ e?rffgéks
Trezor T Optional PIN (1-9 digits) Sl‘gnature the signature n/a
and optional passphrase. (signed by (signed b
Default: 24-word recovery. SatoshiLabs). SatoshiLaybs).
Ledger Tive
- hecks the Checks the
PIN (4-8 digits) o o
: signature thenticity of thi
Ledger Blue and optional passphrase. n/a olfgthe secure K/LIICSHC(;(Elle.y ot the

Default: 24-word recovery.

element firmware
(signed by Ledger).

Also times sending.

1 Must be installed on first use.

Table 5.6: Shows how the firmware is checked.

5.2.5 Software

At last, the software was measured in terms of its attestation methods (see Table 5.7)).

Software Verified by User
Access to the private keys must be
Trezor One confirmed on the device.

Enforced to set a PIN, but can be disabled.

Ledger Nano S

Access to the private keys must be
confirmed on the device.
Enforced to set a PIN. Shows a security checklist
to ensure that a genuine device was bought.

Access to the private keys must be

Keepkey confirmed on the device.

Enforced to set a PIN.

Access to the private keys must be
Trezor T confirmed on the device.

Enforced to set a PIN, but can be disabled.

Ledger Blue

Access to the private keys must be
confirmed on the device.
Enforced to set a PIN. Shows a security checklist
to ensure that a genuine device was bought.

Table 5.7:

Shows how the software is checked.

5.3. Wallet Initialization

5.3 Wallet Initialization

The process of unpacking and initializing the wallets is particulary interesting. This is
because Section 5.2/ shows that a lot of attestation is done by the user or can be observed,
so this process of initializing the wallets makes is clearer how attestation is performed.

5.3.1 Opening

Trezor One: The manufacturer first hints that the seals should be intact and the device
should be sealed in a plastic foil. The packaging is also sealed with strong glue, so
opening the box ruptures is visable.

Ledger Nano S: A simple box with no additional security mechanisms. The manufacturer
notifies the user on its website to check the origin, content, and that the device is not
initialized. Advanced users can also check the hardware integrity by themselves with
pictures of the PCB on the vendor website to ensure no hardware tampering did take
place.

Keepkey: A black box with the hologram. There are no hints in the getting started guide
about the physical appearance of the box and the device. However, there is also plastic
foil on the joining of the case parts.

Trezor T: The packaging can be opened without destroying it. The manufacturer first
hints that the USB Port of the device has a seal.

Ledger Blue: A simple box with no additional security mechanisms. The manufacturer
notifies the user on its website to check the origin, content, and that the device is not
initialized. Advanced users can also check the hardware integrity by themselves to ensure
no hardware tampering did take place. However, the official Ledger support article only
contains pictures of the Nano S PCBs [29].

5.3.2 Setting up

Trezor One: The device prompts "visit trezor.io/start". Therefore, you are not able to set
it up on an offline computer without setting up your own webserver [30]. On the website,
the manufacturer explicitely notifies the user about the holograms from the packaging
and supports him with the installation routine. The software "Trezor Bridge" has to
be installed. Then, the website says that it is time to install the firmware, because the
trezor did not get shipped with existing firmware. After the firmware is installed, a new
wallet can be created or an old wallet can be recovered with the backup words. After
creating a wallet, the Trezor needs a backup. The user is notified to not make a digital
copy of the recovery seed (24 English words). Then, you can also set a name and a PIN
lock with max. 9 digits. After that, the device is ready. Note that everything works over
the browser. The Trezor Bridge sets up a webserver on localhost, where the Trezor wallet
app fetches everything over POST.

19

d.

MARKET REVIEW OF HARDWARE WALLET SECURITY FEATURES

20

Ledger Nano S: The firmware was already on the device. There, the user can set it up
and set a pin directly on the device. Then, the recovery phrase can be written down (also
24 words). It also has to be confirmed with the two buttons on the device. After that,
the device is ready. All this could be done offline. Then, on "start.ledgerwallet.com",
additional apps may be installed. No cryptocurrencies are installed, only the settings are
available. Now, Ledger live has to be installed. This security checklist is really helpful.
It asks the user about the setup and checks the firmware. Ledger live is also able to be
secured by a password. After that, the cryptoasset apps can be installed.

Keepkey: The cover of the box refers to "keepkey.com/getting-started". Connecting the
device only results in the Keepkey logo on the screen. Keepkey’s software is a Chrome
app which as to be downloaded. The firmware and bootloader updates are done via the
Chrome app. Also the device initialization works over the app. Note that the recovery
sentence is only 12 words long. Then, the Chrome app shows the accounts, but only
when connected to the Internet.

Trezor T: The device prompts "visit trezor.io/start". Therefore, you are not able to set it
up on an offline computer without setting up your own webserver [30]. On the website,
the manufacturer explicitely notifies the user about the holograms on the USB port and
supports the user with the installation routine. The software "Trezor Bridge" has to be
installed. Then, the website says that it is time to install the firmware, because the trezor
did not get shipped with existing firmware. This works as the same like the Model One,
because it uses the same software. Therefore, we will this time try to recover the seed
from the Model One: The seed has to be typed on the Trezor screen. The user does not
have to set a PIN, however, a warning will be displayed on the Trezor. Then, the Trezor
T is ready.

Ledger Blue: The firmware was already on the device. The user can set it up and set a pin
directly on the device as the Nano S. We will recover the words from the Nano S. After
that, the device is ready. All this could be done offline. Then, on "start.ledgerwallet.com",
additional apps may be installed. No cryptocurrencies are installed, only the settings
are available. Now, Ledger live is needed again. Now, everything works just as with the
Nano S.

5.4 Existing Vulnerability Classification

Finally, this study collected existing vulnerabilities for the five mentioned hardware
wallets and classify them in terms of the attack vector. Table 5.8 displays the collected
existing vulnerabilities of the five hardware wallets. It can be seen that there were a wide
spectrum of attacks possible, from using the power of the device as a side channel [31] to
using temperature to read the private key from the RAM [32]. The power supply of the
device was also identified as a possible method to skip the PIN check [33]. Ledger also
had decent vulnerabilities, not also the prominent supply chain attack where code could
be injected into the MCU between the host and the secure element [34], but software

Existing Vulnerability Classification

0.4.

‘sjo[[em aIemplIer] paydads

9AT] 9} UO s3PRIIR SUIISIXS JO MIIAIOA() :R'C 9[qRT,

“Sutrodurey
opod
jdiioseaer
waw:\ww_wa.wz ‘o[qeIdUNA 9]
5 Muwm d\w Omma Jy3twx enyg
o%@ com 31 105por] o} ey} onig
‘onpg 108poer] ﬁmwua%ﬂv 3 M_%Nmm 108por]
posn oq teo [Fel 108por] ouy
woryesiiddy Jo royne oy J,
[amwoIyD
I108poer] oY)
asnesag
DU 10Zol],
208 ‘ypejje *91Nn90991YdIR
Surzeoyy diyo [£g] rerrurs
[zg] 2uy o1 JO esnedaq 1, T0zo1],
S[qeta[na poooons osye
os[e oq 0} yStw speyje
Ioygne oyl ey oSe) oA
Aq pejoadsng
‘@R OAI}ISUSS "(D°d oN)
SAGTINOI 10 ou(Q 10791], -I19peoj00q
opos Au_uo_axw ‘ou(Q 10zo1J, ‘ynej oSejoa ' a3 Jo ot} Ayrpowr
23Mo0X0 P[Nod 298 ‘yoejje 01 d[qeIsUNA 2IN12091YDIR PINOD 183D'}} Y
x@xuaawﬁm ue Buizeoyy dryo 99 os[e jysiut oures a2y} sey ue ‘el10joIaJ,
‘yues sI9joRIRYD [zgl sus o3 (eg] Aoxpdoasy H esneoaq ‘310M j0U PID Koxdoo
reroads Y3 s[qers[na a1} JeY) pojess oejje I9peo[3}00(9} JO i 1
.Jo@ﬁ@ wﬁium os[e 2q 03} oelye jnej [euueyd opIs uor}99101d-291IM
udEuow % 0 Ioyjne oy} Qu(10zaiJ, oY} Uy o3 . A1quiour
i a[qeIaunA Aq pejoedsng Jo sioyjne oy J, a[qeraurna [Z¥] 2q2 ‘omsst
[og] °1q 1 [Tg] ueeq digo = 03 anQg
SBM 9D1ASD O], oABT UBIN
S[PoTD
‘ureaIjselep Aymuoe3 oy
‘sseIppe oY1 jo 10j pajoejepun
I9ATOD9I oY} 59949 may “Azowewt jo pokels
‘80 oSueyd © 9pod9p 03 3ied dwnp o3 oIeMULIL
p[noo olqe sem SIY3} asn prnoo payrpour
1o3pe)YY Uy IoUDIeasal o Io3pe})e Uy SIUY UITAA
TEPE | eyl 500 pummmoditnn & CBaiiod)
UIOUDIDJOT ut YA 3
muﬁwDQQ{.QV Surpped ue i ﬁzmwu EW.OHW NON.) oue
S909TIALL os pejuswerdur YoIyM ‘13001100 wmd\s::m Mww wZ
orqestim Sem WU S BIWNBIE | y5lials Sanoos et
! 1ae! N oy} ur :
woreorddy oty TonSmon R om | oy Furpuos [11s
gel ey (8 '¢0-dOS spPeYod jou prp ol SLoe
> 195poT] £q poeardsur s01049 SO 3 el druo
23 JO ap0Od [ouuURYD 9INJOS ® peppaqua JIospor] ajesun
rdroseser Ujim ouop st Y3} Jo s[[edsAg 9y} ur spoo
HOHPESHELL T4 so1qd e oy
utpeledn Jo1idwon 09 an(g
“UOTINI9X0 OPODd
9jouwal 10§ posn
24 p[noo yorym
‘oremurr o uo
mw_\r%mfw>o ‘001A0p Aoy arearad a1y
. ‘Iosn oYy} pmmwﬁu prnoo ‘sAoy meﬁvomiﬁd 10RIIXS
q porgriod [6%] syosored o WBIXS ue U0 dUOP dq St Posn -10peO[300q
3 us o1y m_m@ pogjeId Pl 1, Up[nos 4q Pl o) Ajrpout
g@&%@ﬁ% MM [[eroadg Ew&vdﬁw ue SIY} ‘I9AOMOT] SHLL zoﬁMu PINOD 1930e1y
¥ SBuv [(poamboz i pre poddurs Jtoano ue ‘oroje1en L
. S.duQMu aserydssed ¢ LM. P aq p[noo urd ﬁ “I0M Jou pPIp auQ
1 podim jou ST ‘001D J13uept 10z91,
pnoo PUt NId) sem Alouwrowa 1 tAop pInoo auo Iopro[jooq ayj jo L
uorjoesuURl Ao oyearad oyy oU I, NV JI0Z3L], ‘od uory309j01d-091im
“&ist Sﬂw 10RIIXD 0} O[qe ur 3xe3 urey pagipowt SAOISOIIISS i A1guu