
Proof of Concept of Hacking
Cryptocurrency Hardware Wallets

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Medieninformatik und Visual Computing

eingereicht von

Markus Reichel
Matrikelnummer 01529191

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Privatdoz. Mag.rer.soc.oec. Dipl.-Ing. Dr.techn. Edgar Weippl
Mitwirkung: Univ.Lektor Dipl.-Ing. Dr.techn. Adrian Dabrowski

Wien, 3. Mai 2019
Markus Reichel Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Proof of Concept of Hacking
Cryptocurrency Hardware Wallets

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

Markus Reichel
Registration Number 01529191

to the Faculty of Informatics

at the TU Wien

Advisor: Privatdoz. Mag.rer.soc.oec. Dipl.-Ing. Dr.techn. Edgar Weippl
Assistance: Univ.Lektor Dipl.-Ing. Dr.techn. Adrian Dabrowski

Vienna, 3rd May, 2019
Markus Reichel Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Markus Reichel
Brünner Straße 111-113
2201 Gerasdorf bei Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 3. Mai 2019
Markus Reichel

v

Kurzfassung

Um Kryptowährungsbestände zu sichern bedarf es an Langzeitsicherheit. Viele Hardware-
Cryptocurrency-Wallets wurden daraufhin entwickelt, da diese eine Möglichkeit anbieten,
den privaten Schlüssel offline aufzubewahren. Diese Arbeit ist in zwei Teile geteilt. Die
erste Hälfte analysiert fünf bestehende Wallets in ihrer Software- und Hardwaresicherheit
und Attestation-Methoden. Danach wird eine Klassifikation bereits bestehender Attacken
von diesen Wallets präsentiert.

Die zweite Hälfte zeigt einen Proof-of-Work eines Supply-Chain-Angriffs, bei dem ein
USB-Gerät ein solches Hardware-Wallet emuliert und das Opfer dazu bringt, sein Kryp-
tovermögen an den Angreifer zu überweisen. Es zeigt sich, dass die Wallet-Software der
Hardware zu sehr vertraut und so ein Wallet emuliert werden kann. Deswegen fehlen den
Geräten immernoch wichtige Attestations.

vii

Abstract

Securing cryptocurrency funds require long-term safety. A lot of hardware cryptocurrency
wallets were developed, because they offer a way to store the private key offline. This
thesis is split up in two parts. The first half analyzes five existing wallets in terms of
their software and hardware security design and attestation methods. Then, it presents
a classification of exiting attacks for these wallets.

The second half provides a proof of a work of a possible supply chain attack by emulating
a hardware wallet on a USB device and tricking the victim into sending his funds to the
attackers cryptocurrency account. It proves that wallet software puts too much trust in
the hardware and that such a hardware wallet can be emulated. Therefore, the devices
are missing important attestations.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1

2 Background 3
2.1 Cryptocurrency Wallets . 3
2.2 Hardware Security Basics . 4
2.3 Hardware Wallets . 6
2.4 Universal Serial Bus (USB) . 7

3 Related Work 11

4 Methology 13
4.1 Methology of the Security Feature Review 13
4.2 Methology of the Proof of Concept . 13

5 Market Review of Hardware Wallet Security Features 15
5.1 General Overview . 15
5.2 Attestation Methods . 16
5.3 Wallet Initialization . 19
5.4 Existing Vulnerability Classification 20
5.5 Discussion . 22

6 Proof of Concept 23
6.1 Configuring the USB Armory . 23
6.2 Sniffing the USB Protocol . 23
6.3 Implementation of the Fake Wallet . 25
6.4 Final Attack Vector . 32
6.5 Discussion . 32

xi

7 Future Work 33

8 Conclusion 35

Bibliography 37

CHAPTER 1
Introduction

In 2008, a whitepaper [1] from a person with the pseudonym "Satoshi Nakamoto" ap-
peared in the internet about the design of the cryptocurrency Bitcoin. Shortly after
that, in 2009, the first Bitcoin Software came available [2]. Since then, decentralized
cryptocurrencies such as Bitcoin are rising in terms of popularity and acceptance [3],
regardless of a lot of up and downs. Also, multiple hundreds of such cryptocurrencies
were developed. With their increasing use, also the security characteristics were getting
more important. Cryptocurrencies rely, as the name says, on cryptography, and in order
to do transactions, a user needs to authenticate with his private key.
In the beginning, special software called "wallets" was developed to be responsible for
storing the private key and managing it, but recently, more and more companies are
developing hardware wallets, which are physical devices [4]. The idea behind them is
that if the PC is compromised, important parts of the pay process are still done in the
supposedly safe hardware.
However, this does not solve all security relevant problems, because a physical device
can also be manipulated or stolen. Therefore, these devices must also be evaluated in
terms of security proficiency. This bachelor thesis will first investigate security properties
of the most prominent solutions in the cryptocurrency hardware wallet market. Then,
we will create a proof of concept to show that cryptocurrency hardware wallets can be
hacked when gaining physical access of the device.

1

1. Introduction

In in this work, the following scenario is evaluated:
The victim gets a fake device from a supply chain attacker, e.g., a flash drive sized
computer like the USB armory [5], which speaks the protocol of the host application over
USB. Within this scenario, the following questions arrive:

1. Is it possible to emulate a hardware wallet on a USB armory?

2. Would the victim notice the attack?

In order to implement the fake device which should disguise itself as a hardware wallet,
information about the specific implementation of the protocol of the wallet was collected.
We compare the existing work where such wallets got compromised with each other.
Papers and blogs regarding the protocol for some vendors already exist (see Section 3).
If it is not information about the protocol, it has to be reverse engineered with a sniffer
for the USB traffic.

2

CHAPTER 2
Background

In order to work in the field of cryptocurrency hardware wallet security, understanding
several fundamental concepts of such a system is essential. Therefore, this section will
contain a broad sprectrum of topics necessary to understand the basics of a wallet.

2.1 Cryptocurrency Wallets

Cryptocurrencies like Bitcoin use asymmetric cryptography to control the access of the
money. The coins are not stored as a plain amount but in a huge series of blocks of
transactions, called a blockchain. With this, the public key acts like a receiver address of
a transaction, like an IBAN. However, the public key can only be used to receive money
or follow the transactions, because only with the private key, a transaction can be signed
right to send money, similar to a nearly ideal manual signature. Therefore, in contrast to
the public key, the cryptocurrency owner has to protect the private key because getting
this key is synonymous with getting control over all the money of this account. There
are several ways to store such a private key. In this work, we differentiate between hot
and cold wallets [6].

2.1.1 Hot Wallets

Hot wallets are typically software wallets running on a device connected to the internet
like a PC or a smartphone. With web wallets (see Figure 2.1), the private keys are stored
on the servers of the provider, so one needs special trust in the company running those
services. In terms of security, hot wallets all share the risk that the private key can
be compromised over the internet. When e.g. the database of a cryptocurrency online
exchange gets hacked, all of the customers’ private keys are leaked. It is recommended to
use hot wallets like a purse, particularly to not store a huge amount in one wallet.

3

2. Background

Figure 2.1: The web inteface of strongcoin, a hot wallet [7].

2.1.2 Cold Wallets

Cold wallets are not connected to the internet and can be used to deposit the money.
Just writing the private key on a paper ("paper wallet") to lock it up in a safe is the
simplest example. Also special hardware wallets (see Figure 2.2), devices which store the
private key offline, fall under this category. When the attacker has no physical access to
the device, the only risk of getting hacked is when the hardware wallet is connected to a
computer. There are several approaches to make a hardware wallet secure, some devices
strive for openess of the system, while e.g. Ledger builds wallets where the private key is
stored in a closed secure element [4]. Section 5 will give a more detail overview of the
different security approaches.

2.2 Hardware Security Basics

The main goal of a hardware cryptocurrency wallet is to protect the private key. In order
to analyze its security, it is necessary to go into detail about their architectures and
attestation methods.

2.2.1 Hardware Security Architecture

Most modern cryptocurrency hardware wallets are build with a common architecture.
They are embedded systems, in their cores consisting of a microcontroller. Rather than a
microprocessor, a microcontroller unit (MCU) today is a system-on-a-chip solution with
RAM and ROM together on the same chip with the arithmetic logic unit (ALU) and other

4

2.2. Hardware Security Basics

Figure 2.2: The Trezor Model T, a cold wallet [8].

peripherals such as clocks and signal generators. Coprocessors to speed up cryptographic
algorithms are also popular. The firmware, which is how the software running on the
microcontroller is called, communicates over an interface (mostly USB). On the host side,
software on the PC receives the data and processes it further. The two main computer
architectures are von Neumann, where data and instructions share the memory space,
and Harvard, where data and instructions are seperated. Harvard offers more protection
against so called "micro-probing" attacks [9], where the CPU is interrupted and data
can be read from the data bus. It is possible to use debugging interfaces to extract and
manipulate the firmware, so designers try to hide or remove them. Companies also make
the housing tamper-resistant with coatings or encapsulations, for example with epoxy.
However, for an attacker, it is technically possible to open the casing to decap microcon-
troller and memory chips to read out the data [9]. Other attacks like fault attacks where
the supply voltage is manipulated to skip logic in the firmware or side-channel attacks
where a channel like the voltage leaks critial information also exist. For this reason,
secure elements were developed. They are designed to contain confidential data like
cryptographic keys or IDs and to be tamper-resistant. A wide-known example of secure
elements are smartcards, which are widely used in the fields of telephony, passports, pay
TV and banking. These contain mechanisms such as light sensors to detect chip openings,
an obfuscated layout and are designed against side channels and fault detection. The
common criteria (CC) [10] framework aims to evaluate products in terms of security,
with a rating ranging at the beginning from EAL1 to EAL7 at the end (with an optional
+ for higher features). Typical smart cards are classified as EAL4+. Section 5 contains a
table with the security certifications of the hardware wallets.

2.2.2 Remote attestation

To create a secure enviroment where manipulation can be detected, one can use hardware
and software mechanisms to create a concept called remote attestation, which etablishes

5

2. Background

trust in a device. Attestation defines a verifier, who verifies the state of a prover over an
attestation protocol [11]. There are three remote attestation types [12]:

1. Hardware-Based Remote Attestation: The hardware supports protecting keys and
summarizing the state of the system as a hash, often realized as a Trusted Plaform
Module (TPM).

2. Software-Based Remote Attestation: Witout any additional hardware it is possible
to develop checksum algorithms which include run-time side-effects for attestation.

3. Hybrid Remote Attestation: This attestation uses hardware and software approaches
together in order to get the advantages from both (e.g. get immutability via read-
only memory from the hardware and exclusive resource access control via a formally
verified firmware).

Adversary models on remote attestation are: (i) remote adversaries, (ii) local adversaries
and (iii) physical adversaries. Remote adversaries attack the software of the platform via
injecting code in the network, while local adversaries are capable of manipulating and
sniffing the communication channel of the prover. Physical adversaries have full access
to the hardware of the device and use side channels or physical memory extraction to
manipulate it. Remote attestation is mainly able to deflect type i and ii of adversaries,
while tamper-resistant methods mentioned in Section 2.2.1 target type iii. The focus of
our proof of concept is a supply chain attack, therefore, we choose the physical adversary
as our model.

2.3 Hardware Wallets

In Section 2.1.2, we classify hardware wallets as cold wallets. They store the private
key in their memory, either on a normal chip or a secure element (see Section 2.2.1).
Access to it is easier to control in contrast to a software wallet, because every interaction
with the wallet goes over the USB port and is controlled by various types of attestations.
Regarding the workflow, after purchasing a hardware wallet, it must first be setup in
order to make transactions.

2.3.1 Setup

Hardware wallets always have to be initialized before usage. In addition to general
information such as the device name, important information like the cryptocurrency
account has to be generated on the device. It depends on wether the new wallet comes
with shipped firmware or needs software and an internet connection for initialization,
but in general it will generate a random seed phrase with a procedure standardized in
Bitcoin Improvement Proposal 39 (BIP39) [13]. The words contained in this phrase are
mnemonics, which can together with an optional passphrase be converted into a binary

6

2.4. Universal Serial Bus (USB)

seed used to create a deterministic wallet. Therefore, a mnemonic phrase can also be
used to backup an existing wallet, assuming that the words are written down when they
were shown at setup.

2.3.2 Transactions

After that, the user can send cryptocurrencies with the hardware wallet. An advantage
of the asymmetric cryptography is the fact that the private key never has to be revealed
by the hardware wallet. The host can build a transaction and send it to the wallet, which
signs it with the key and then sends the signed transaction back to the host. The host
is now able to send the signed transaction to the cryptocurrency network without the
knowledge of the private key.

2.4 Universal Serial Bus (USB)
Every in this thesis evaluated hardware wallet uses the Universal Serial Bus (USB) to
communicate with the host computer. Simply put, USB [14] is a serial bus system where
the communication works asymmetrically. The computer acts as the host part who issues
requests and the device acts as the device part, answering those.

2.4.1 Protocols

It was already mentioned that the USB protocol is host-centric, which means that the
so called USB transactions are initiated from the host. USB uses four types of lowlevel
packets: (i) token packets which act like headers, (ii) data packets which contain the
payload, (iii) handshake packets used for transaction logic and (iv) start-of-frame packets
for the synchronization of the transmission. However, when writing software for USB, a
programmer will typically not get in touch with these packets because the hardware (in
case of a PC the so called USB host controller) already handles these lowlevel messages.
Still, a lot of devices rely on a protocol stack with multiple layers, e.g. the hardware
wallet Trezor One uses the USB HID (Human Interface Device) - protocol to implement
the wallet-specific commands.

2.4.2 Endpoints

Endpoints are a central concept in USB, as they allow a single physical connection to be
split up logically. They are like a device-side socket like in TCP/IP. It is very common
that a USB device offers multiple endpoints, e.g., the Trezor One offers one endpoint for
the regular communication and one endpoint for two-factor-authentication. An example
endpoint configuration is shown in Figure 2.3. As the bus is host-controlled, the device
cannot send something over the bus by itself, therefore, there is a seperate in and out
buffer for every endpoint.
The communication between the host and an endpoint is called pipe. As described in
Section 2.4.1, the lowlevel packets are not important from a programmer’s perspective,

7

2. Background

but the higher-level USB pipe has, in addition to parameters like maximum bandwidth
per pipe, the so called transfer type. With this, an endpoint can have four different
transfer types:

1. Control Tranfers: This transfer-type is used for commandlike messages or status
updates.

2. Interrupt Transfers: As the name says, they deliver device data to trigger interrupts.
Input devices like mice and keyboards use them.

3. Isochronous Transfers: Here, the packets are sent continuously in a constant interval.
Video and audio streams are example applications.

4. Bulk Transfers: These are used to send big chunks of data, e.g. printer jobs.
Error-checking is used to ensure the integrity.

Figure 2.3: Logical view of a host connected to two devices (in USB called "functions").
Every function has multiple endpoints [14].

2.4.3 Descriptors

Especially in case of USB, there are many different types of devices which have a variety
of different functions (device classes). When a USB device is plugged into the computer,

8

2.4. Universal Serial Bus (USB)

the operating system needs a way to identify not only the device but also the capabilities
and the protocols it uses. This is implemented with the USB descriptors; they form a
hierarchical network of information about the device which can be retrieved from the host.
Hardware manufacturers have to ensure that the device responds with these descriptors.

1. Device Descriptors: contain general information about the device like the name,
device class and manufacturer.

2. Configuration Descriptors: used to configure power consumption and get the number
of interfaces.

3. Interface Descriptors: describe multiple endpoints bundled together into one logical
interface.

4. Endpoint Descriptors: contain endpoint information like transfer type and address.

5. String Descriptors: are optional, but add human-readable information about the
device into the description.

6. Report Descriptors: It is used if the USB device is a HID device. In order to reduce
the amount of drivers the operation system has to provide, the USBHID protocol
provides report descriptors to describe the message format used by HID devices.
For example a mouse report descriptor contains information how the two buttons,
the wheel and the x/y speed is sent.

9

CHAPTER 3
Related Work

Recently, Roth et al. [15] gave a talk about several cryptocurrency hardware wallet
vulnerabilities. The explained a wide range of attacks, from side-channel attacks and
fault attacks to lowlevel attacks. The proof of concept in this work reverse engineers
and emulates the Trezor One low-level protocol. Similar work has been done for the
Ledger Nano and Ledger Nano S. Gkaniatsou et al. [16] showed that low-level protocols
of hardware wallets (in this case Ledger devices) can be attacked. They analyzed the
Ledger-specific protocol, categorize and explained possible attacks and then offered fixes
for the protocol. Other related work includes attacks on the cryptocurrency protocols
itself and attacks on embedded systems which are similar to hardware wallets. Datko et
al. [17] presented in a talk at DEF CON 2017 that the similar architecture that Trezor
and Keepkey hardware wallets share is vulnerable to fault attacks (in the presentation
also called "glitches") which can be used to skip critical code sections such as password-
checking routines.
But before cryptocurrency hardware wallets were analyzed in terms of security, a lot
of work on attacking cryptocurrencies itself such as Bitcoin was done. The big Bitcoin
exchange MtGox filed for bankruptcy [18] after beeing attacked with the so called
transaction malleability, which made it possible for a user to issue a withdrawal while
making the exchange belief that the transaction failed, which resulted in a double
withdrawal. Rosenfeld [19] analyzed the possibility of double spending with hash-based
attacks. The danger of double spending was also already mentioned in the initial
Nakamoto whitepaper [1]. An example for another cryptocurrency and another attack
vector is the work of Atzei et al. [20], who did a survey on attacks on Ethereum smart
contracts. Ethereum introduced this small programs which should be executed in a
network containing mutually untrusting nodes, however, the platform contained several
security vulnerabilities.
In the hardware security field, there is a wide selection of attack approaches available.
General vulnerability reviews such as the one from Dalton et al. [21] looked at known

11

3. Related Work

threats such as buffer overflows, format string attacks and information disclosure to
discuss the effectivity of novel hardware architectures against these. Roland et al. [22]
introduced attacks against platforms with secure elements, in this case secure elements
on smartphones, which are attacked via NFC. In the end, they were able to not only
perfom a denial of service (DoS) attack against the secure element, but also remotely use
the element without knowledge of the victim.

12

CHAPTER 4
Methology

The work of this thesis is split into two parts, a market review of hardware wallet security
features to get an overview about hardware wallet security, and a specific proof of concept
(PoC) to show weaknesses in the security model.

4.1 Methology of the Security Feature Review
Before a specific proof of concept was implemented, classification of the field of hardware
cryptocurrency wallet security was needed. We did not only need know about the
architecture of prominent wallets and their security approaches, but also about existing
attacks to get an understanding of common attack vectors. Literature research was the
primary method to gather information about the wallet architecture. Especially in the
blogs of the individual companies, information about existing vulnerabilities could be
found, which were then classfied in terms of type. After that, the wallets were initialized
and analyzed hands-on in order to get their attestation methods and outer security
mechanisms. Important differences between the wallets could be summed up in tables.

4.2 Methology of the Proof of Concept
With the finished review, we decided for which wallet the proof of concept is going to be
implemented in order to demonstrate further vulnerabilities with hardware wallets. The
hardware wallet approach assumes that the PC software should not be trusted, but this
does not justify that the hardware can be trusted. This resulted in the goal to emulate a
hardware wallet. The emulation is build on a USB stick with software capabilities of a
full computer, because one can profit from the rich software libraries and tools available.
Therefore, a flash drive sized computer was used. This malicious wallet had to show
a fake cryptocurrency address to trick the victim into sending it to the evil account.
Because wallets communicate over USB, a full USB stack had to be emulated. The proof

13

4. Methology

of concept could be easily verified by checking if the software thinks a wallet is plugged
in and the malicious address works as described.

14

CHAPTER 5
Market Review of Hardware

Wallet Security Features

Before the proof of concept was implemented, research about the five hardware wallets was
done. After creating a basic overview, the attestations in respect of the different wallets
were examined from hardware to software and then, the unpacking and initialization
procedures of the wallets were analyzed. In the end, already known security holes were
collected and classified.

5.1 General Overview
Five hardware wallets were chosen for the study, which were seen as the most prominent
devices. The selected wallets were: (i) Trezor Model One, (ii) Trezor Model T, (iii)
Keepkey, (iv) Ledger Nano S and (v) Ledger Blue. The openess of the platforms can be
seen in Table 5.1. These wallets have very different hardware characteristics, as seen in
Table 5.2.

Fully Open Source Software Firmware Hardware
Trezor One yes yes yes
Ledger Nano S yes no no
Keepkey yes yes no
Trezor T yes yes yes
Ledger Blue yes no no1
1 Only development version: https://github.com/LedgerHQ/blue-schematics.

Table 5.1: Openess of the platforms [23] [24].

15

https://github.com/LedgerHQ/blue-schematics

5. Market Review of Hardware Wallet Security Features

Architecture Microcontroller Secure Element Certifications
Trezor One [25] STM32F205 n/a n/a
Ledger Nano S [4] STM32F042K ST31H320 CC EAL 5+

Keepkey [26][27] STM32F205RGT6 n/a FIPS PUB 140-2,
FIPS PUB 180-2

Trezor T [25] STM32F427VIT6 n/a n/a
Ledger Blue [4] STM32L476 ST31G480 CC EAL 5+

Table 5.2: Architectural overview: microcontrollers and certifications.

5.2 Attestation Methods
Regarding the attestation, the packaging and hardware was observed, and on the websites,
information about the firmware and software attestations were gathered. Note that Ledger
states that hologram stickers are just a "false impression of security" because they can be
easily duplicated [28].

5.2.1 Packaging

In the beginning, the packaging of the wallets was inspected by ourselves (see Table 5.3).

Packaging Verified by User

Trezor One Two hologram stickers,
sealed with strong glue. Plastic foil on the device.

Ledger Nano S No special sealing.1

Keepkey One hologram sticker,
package tampering is barely visible.2 Plastic foil on the device.

Trezor T One hologram sticker on the
USB port of the device.

Ledger Blue No special sealing.1
1 Company says that it does not need temperevident packaging because of its strong device security.
2 The package can be closed again and the indicator that it has been openend is only barely visible.

Table 5.3: Shows how the devices were shipped to the customer.

16

5.2. Attestation Methods

5.2.2 Hardware

Then, the hardware attestations of the devices were gathered (see Table 5.4).

Hardware Verified by User

Trezor One Plastic, ultrasonically
welded to be tamperproof.

Ledger Nano S
Plastic, users can verify
the integrity of the hardware with images of
the printed circuit board (PCB) online.

Keepkey Anodized aluminium case,
build to be tamperproof.

Trezor T Plastic, ultrasonically
welded to be tamperproof.

Ledger Blue
Plastic and aluminium. Users
should verify the integrity of the hardware with images of the PCB
online, there are no pictures of the PCB!

Table 5.4: Shows how the casings are protected.

5.2.3 Bootloader

Every device needs to check the autenticity of the bootloader with their security model
(see Table 5.5).

Bootloader Verified by Firmware Verified by Secure Element

Trezor One Authenticity is checked
by the firmware via a SHA256 hash. n/a

Ledger Nano S n/a Checks the authenticity.
Also times sending.

Keepkey Authenticity is checked
by the firmware via a SHA256 hash. n/a

Trezor T Authenticity is checked
by the firmware via a SHA256 hash. n/a

Ledger Blue n/a Checks the authenticity.
Also times sending.

Table 5.5: Shows how the bootloader is checked.

17

5. Market Review of Hardware Wallet Security Features

5.2.4 Firmware

The firmware is one of the critical parts and has a lot of attestation methods (see Table
5.6).

Firmware Verified by User Verified by
Bootloader

Verified by
Software

Verified by
Secure Element

Trezor One
Not shipped with firmware.1
Optional PIN (1-9 digits)
and optional passphrase.
Default: 24-word recovery.

Checks the
signature
(signed by
SatoshiLabs).

The Trezor
wallet checks
the signature
(signed by
SatoshiLabs).

n/a

Ledger Nano S
PIN (4-8 digits)
and optional passphrase.
Default: 24-word recovery.

n/a

Ledger live
checks the
signature
of the secure
element firmware
(signed by Ledger).

Checks the
authenticity of the
MCU code.
Also times sending.

Keepkey
Optional PIN (1-9 digits)
and optional passphrase.
Default: 12-word recovery.

Checks the
signature
(signed by
Keepkey).

The Keepkey
app checks
the signature
(signed by
Keepkey).

n/a

Trezor T
Not shipped with firmware.1
Optional PIN (1-9 digits)
and optional passphrase.
Default: 24-word recovery.

Checks the
signature
(signed by
SatoshiLabs).

The Trezor
wallet checks
the signature
(signed by
SatoshiLabs).

n/a

Ledger Blue
PIN (4-8 digits)
and optional passphrase.
Default: 24-word recovery.

n/a

Ledger live
checks the
signature
of the secure
element firmware
(signed by Ledger).

Checks the
authenticity of the
MCU code.
Also times sending.

1 Must be installed on first use.

Table 5.6: Shows how the firmware is checked.

5.2.5 Software

At last, the software was measured in terms of its attestation methods (see Table 5.7).

Software Verified by User

Trezor One
Access to the private keys must be
confirmed on the device.
Enforced to set a PIN, but can be disabled.

Ledger Nano S
Access to the private keys must be
confirmed on the device.
Enforced to set a PIN. Shows a security checklist
to ensure that a genuine device was bought.

Keepkey
Access to the private keys must be
confirmed on the device.
Enforced to set a PIN.

Trezor T
Access to the private keys must be
confirmed on the device.
Enforced to set a PIN, but can be disabled.

Ledger Blue
Access to the private keys must be
confirmed on the device.
Enforced to set a PIN. Shows a security checklist
to ensure that a genuine device was bought.

Table 5.7: Shows how the software is checked.

18

5.3. Wallet Initialization

5.3 Wallet Initialization

The process of unpacking and initializing the wallets is particulary interesting. This is
because Section 5.2 shows that a lot of attestation is done by the user or can be observed,
so this process of initializing the wallets makes is clearer how attestation is performed.

5.3.1 Opening

Trezor One: The manufacturer first hints that the seals should be intact and the device
should be sealed in a plastic foil. The packaging is also sealed with strong glue, so
opening the box ruptures is visable.

Ledger Nano S: A simple box with no additional security mechanisms. The manufacturer
notifies the user on its website to check the origin, content, and that the device is not
initialized. Advanced users can also check the hardware integrity by themselves with
pictures of the PCB on the vendor website to ensure no hardware tampering did take
place.

Keepkey: A black box with the hologram. There are no hints in the getting started guide
about the physical appearance of the box and the device. However, there is also plastic
foil on the joining of the case parts.

Trezor T: The packaging can be opened without destroying it. The manufacturer first
hints that the USB Port of the device has a seal.

Ledger Blue: A simple box with no additional security mechanisms. The manufacturer
notifies the user on its website to check the origin, content, and that the device is not
initialized. Advanced users can also check the hardware integrity by themselves to ensure
no hardware tampering did take place. However, the official Ledger support article only
contains pictures of the Nano S PCBs [29].

5.3.2 Setting up

Trezor One: The device prompts "visit trezor.io/start". Therefore, you are not able to set
it up on an offline computer without setting up your own webserver [30]. On the website,
the manufacturer explicitely notifies the user about the holograms from the packaging
and supports him with the installation routine. The software "Trezor Bridge" has to
be installed. Then, the website says that it is time to install the firmware, because the
trezor did not get shipped with existing firmware. After the firmware is installed, a new
wallet can be created or an old wallet can be recovered with the backup words. After
creating a wallet, the Trezor needs a backup. The user is notified to not make a digital
copy of the recovery seed (24 English words). Then, you can also set a name and a PIN
lock with max. 9 digits. After that, the device is ready. Note that everything works over
the browser. The Trezor Bridge sets up a webserver on localhost, where the Trezor wallet
app fetches everything over POST.

19

5. Market Review of Hardware Wallet Security Features

Ledger Nano S: The firmware was already on the device. There, the user can set it up
and set a pin directly on the device. Then, the recovery phrase can be written down (also
24 words). It also has to be confirmed with the two buttons on the device. After that,
the device is ready. All this could be done offline. Then, on "start.ledgerwallet.com",
additional apps may be installed. No cryptocurrencies are installed, only the settings are
available. Now, Ledger live has to be installed. This security checklist is really helpful.
It asks the user about the setup and checks the firmware. Ledger live is also able to be
secured by a password. After that, the cryptoasset apps can be installed.

Keepkey: The cover of the box refers to "keepkey.com/getting-started". Connecting the
device only results in the Keepkey logo on the screen. Keepkey’s software is a Chrome
app which as to be downloaded. The firmware and bootloader updates are done via the
Chrome app. Also the device initialization works over the app. Note that the recovery
sentence is only 12 words long. Then, the Chrome app shows the accounts, but only
when connected to the Internet.

Trezor T: The device prompts "visit trezor.io/start". Therefore, you are not able to set it
up on an offline computer without setting up your own webserver [30]. On the website,
the manufacturer explicitely notifies the user about the holograms on the USB port and
supports the user with the installation routine. The software "Trezor Bridge" has to be
installed. Then, the website says that it is time to install the firmware, because the trezor
did not get shipped with existing firmware. This works as the same like the Model One,
because it uses the same software. Therefore, we will this time try to recover the seed
from the Model One: The seed has to be typed on the Trezor screen. The user does not
have to set a PIN, however, a warning will be displayed on the Trezor. Then, the Trezor
T is ready.

Ledger Blue: The firmware was already on the device. The user can set it up and set a pin
directly on the device as the Nano S. We will recover the words from the Nano S. After
that, the device is ready. All this could be done offline. Then, on "start.ledgerwallet.com",
additional apps may be installed. No cryptocurrencies are installed, only the settings
are available. Now, Ledger live is needed again. Now, everything works just as with the
Nano S.

5.4 Existing Vulnerability Classification

Finally, this study collected existing vulnerabilities for the five mentioned hardware
wallets and classify them in terms of the attack vector. Table 5.8 displays the collected
existing vulnerabilities of the five hardware wallets. It can be seen that there were a wide
spectrum of attacks possible, from using the power of the device as a side channel [31] to
using temperature to read the private key from the RAM [32]. The power supply of the
device was also identified as a possible method to skip the PIN check [33]. Ledger also
had decent vulnerabilities, not also the prominent supply chain attack where code could
be injected into the MCU between the host and the secure element [34], but software

20

5.4. Existing Vulnerability Classification
E
x
is
ti
n
g

A
tt
ac
k
s

H
ar
d
w
ar
e

F
ir
m
w
ar
e

S
o
ft
w
ar
e

C
la
ss
i-

fi
ca
ti
o
n

S
u
p
p
ly

C
h
ai
n

S
id
e

C
h
an

n
el

F
au

lt
D
at
a

R
em

an
en

ce
S
u
p
p
ly

C
h
ai
n

L
ow

le
v
el

T
im

in
g

C
ry
p
to
g
ra
p
h
y

R
em

o
te

T
re
zo
r

O
ne

D
ue

to
a
ch
ip

is
su
e,

th
e
[3
7]

m
em

or
y

w
ri
te
-p
ro
te
ct
io
n

of
th
e
b
oo

tl
oa
de
r

di
d
no

t
w
or
k.

T
he
re
fo
re
,
an

A
tt
ac
ke
r
co
ul
d

m
od

if
y
th
e

b
oo

tl
oa
de
r.

W
he
n
[3
1]

an
al
yz
in
g
th
e

p
ow

er
co
ns
um

pt
io
n

w
it
h
an

os
ci
ll
os
co
p
e,

on
e
co
ul
d

id
en
ti
fy

cu
rr
en
tl
y

ex
ec
ut
ed

co
de
.
T
hi
s

co
ul
d
b
e

us
ed

to
ex
tr
ac
t

th
e
pr
iv
at
e
ke
y.

W
he
n
[3
3]

m
an

ip
ul
at
in
g

th
e
vo
lt
ag
e

of
a

m
od

ifi
ed

T
re
zo
r

de
vi
ce
,
th
e

pi
n
co
ul
d
b
e

sk
ip
p
ed
.

H
ow

ev
er
,
th
is

co
ul
dn

’t
b
e
do

ne
on

an
un

m
od

ifi
ed

de
vi
ce
.

T
he

pr
iv
at
e

ke
ys

[3
2]

ar
e
ke
pt

in
pl
ai
n
te
xt

in
SR

A
M
.
T
he

m
em

or
y
w
as

no
t
w
ip
ed
,

an
d
w
it
h
a

ch
ip

fr
ee
ze
r,

an
at
ta
ck
er

co
ul
d

ex
tr
ac
t
th
e

ke
ys
.

A
sp
ec
ia
ll
y

cr
af
te
d

tr
an

sa
ct
io
n

co
ul
d
[3
8]

tr
ig
ge
r
a
bu

ff
er

ov
er
fl
ow

,
w
it
h

w
hi
ch

an
at
ta
ck
er

w
as

ab
le

to
ex
tr
ac
t

th
e
pr
iv
at
e
ke
y

(P
IN

an
d

pa
ss
ph

ra
se

re
qu

ir
ed
).

Sp
ec
ia
ll
y

cr
af
te
d
U
SB

pa
ck
et
s
[3
9]

co
ul
d
tr
ig
ge
r

ov
er
fl
ow

s
on

ol
d
fi
rm

w
ar
e,

w
hi
ch

co
ul
d
b
e

us
ed

fo
r
re
m
ot
e

co
de

ex
ec
ut
io
n.

T
O
C
T
O
U
:

A
sp
ec
ia
ll
y

cr
af
te
d
[4
0]

m
ul
ti
si
g

tr
an

sa
ct
io
n

co
ul
d

co
nt
ai
n
a

ch
an

ge
ou

tp
ut

of
an

at
ta
ck
er
,

w
hi
ch

w
as
n’
t

co
nfi

rm
ed

by
th
e
us
er
.

L
ed
ge
r

N
an

o
S

D
ue

to
co
m
pi
le
r

in
tr
in
si
cs
,
on

e
ca
n
pu

t
ex
pl
oi
t

co
de

in
th
e

un
sa
fe

L
ed
ge
r

ch
ip

[3
4]

m
em

or
y
w
hi
le

st
il
l
se
nd

in
g
th
e

se
cu
re

el
em

en
t

th
e
or
ig
in
al

fi
rm

w
ar
e

("
M
C
U

fo
ol
in
g"
).

W
it
h
th
is
,

m
od

ifi
ed

fi
rm

w
ar
e

st
ay
ed

un
de
te
ct
ed

fo
r

th
e
ge
nu

it
y

ch
ec
k.

Sy
sc
al
ls

of
th
e

em
b
ed
de
d

O
S
B
O
L
O
S

di
d
no

t
ch
ec
k

th
e
p
oi
nt
er
s

in
th
e
[4
1]

ar
gu

m
en
ts

co
rr
ec
tl
y,

w
hi
ch

co
ul
d
re
su
lt

in
de
re
fe
re
nc
in
g

a
nu

ll
p
oi
nt
er
.

A
n
at
ta
ck
er

co
ul
d
us
e
th
is

to
du

m
p
pa

rt
of

m
em

or
y.

U
pg

ra
di
ng

B
O
L
O
S
[4
1]

is
do

ne
w
it
h

a
se
cu
re

ch
an

ne
l

in
sp
ir
ed

by
SC

P
-0
2.

H
ow

ev
er
,
th
e

M
A
C

pa
rt

w
as

no
t

im
pl
em

en
te
d
so

an
pa

dd
in
g

or
ac
le

at
ta
ck

w
as

p
os
si
bl
e.

T
he

re
se
ar
ch
er

w
as

ab
le

to
de
co
de

a
fe
w

by
te
s

of
th
e

da
ta
st
re
am

.

T
ra
ns
ac
ti
on

Ja
va
sc
ri
pt

co
de

of
th
e

L
ed
ge
r

C
hr
om

e
[3
5]

A
pp

li
ca
ti
on

w
as

w
ri
ta
bl
e

w
it
ho

ut
pr
iv
il
eg
es

(A
pp

D
at
a

fo
ld
er
).

A
n
A
tt
ac
ke
r

co
ul
d

ch
an

ge
e.
g.

th
e
re
ce
iv
er

ad
dr
es
s.

K
ee
pk

ey

D
ue

to
a
ch
ip

is
su
e,

th
e
[4
2]

m
em

or
y

w
ri
te
-p
ro
te
ct
io
n

of
th
e
b
oo

tl
oa
de
r

di
d
no

t
w
or
k.

T
he
re
fo
re
,
an

A
tt
ac
ke
r
co
ul
d

m
od

if
y
th
e

b
oo

tl
oa
de
r.

M
ig
ht

ha
ve

b
ee
n
[3
1]

vu
ln
er
ab

le
to

th
e

si
de

ch
an

ne
l

at
ta
ck

b
ec
au

se
it

ha
s
th
e
sa
m
e

ar
ch
it
ec
tu
re

of
th
e

T
re
zo
r
O
ne

(N
o
P
oC

).

T
he

au
th
or
s
of

th
e
T
re
zo
r
O
ne

fa
ul
t
at
ta
ck

st
at
ed

th
at

th
e

K
ee
pk

ey
[3
3]

m
ig
ht

al
so

b
e

vu
ln
er
ab

le
to

a
vo
lt
ag
e
fa
ul
t.

Su
sp
ec
te
d
by

th
e
au

th
or

to
b
e
al
so

vu
le
ra
bl
e

to
th
e
[3
2]

ch
ip

fr
ee
zi
ng

at
ta
ck
,
se
e

T
re
zo
r
O
ne
.

T
he

de
vi
ce

w
as

vu
ln
er
ab

le
[3
6]

to
a
fo
rm

at
st
ri
ng

at
ta
ck
.

W
it
h
sp
ec
ia
l

ch
ar
ac
te
rs

se
nt
,

an
at
ta
ck
er

co
ul
d
ex
ec
ut
e

ex
pl
oi
t
co
de

or
re
tr
ie
ve

se
ns
it
iv
e
da

ta
.

T
re
zo
r
T

V
ol
ta
ge

fa
ul
t

at
ta
ck

m
ig
ht

al
so

su
cc
ee
d

b
ec
au

se
of

si
m
il
ar

[3
3]

ar
ch
it
ec
tu
re
.

Su
sp
ec
te
d
by

th
e
au

th
or

to
b
e
al
so

vu
le
ra
bl
e

to
th
e
[3
2]

ch
ip

fr
ee
zi
ng

at
ta
ck
,
se
e

T
re
zo
r
O
ne
.

L
ed
ge
r

B
lu
e

T
he

au
th
or

of
th
e
L
ed
ge
r
[3
4]

N
an

o
S
M
C
U

fo
ol
in
g
st
at
ed

th
at

th
e
L
ed
ge
r

B
lu
e
m
ig
ht

al
so

b
e
vu

ln
er
ab

le
.

B
ec
au

se
th
e
L
ed
ge
r

C
hr
om

e
[3
5]

A
pp

li
ca
ti
on

ca
n
b
e
us
ed

w
it
h

L
ed
ge
r
B
lu
e,

it
w
as

al
so

vu
ln
er
ab

le
to

th
e

un
pr
iv
il
eg
ed

Ja
va
sc
ri
pt

co
de

ta
m
p
er
in
g.

Ta
bl
e
5.
8:

O
ve
rv
ie
w

of
ex
ist

in
g
at
ta
ck
s
on

th
e
fiv

e
sp
ec
ifi
ed

ha
rd
w
ar
e
w
al
le
ts
.

21

5. Market Review of Hardware Wallet Security Features

errors like the javascript file access exploit in the wallet [35]. Keepkey also had a C
vulnerability with a format string [36].

5.5 Discussion
This security feature review did not only gave a good overview and introduction in
the field of cryptocurrency hardware wallets, but also explained the companies unique
approaches in protecting the user’s private key. When reviewing the collected general
information about the wallets, it is clearly visible that the different companies follow
diverse approaches which is visible through all attestation layers. Table 5.1 shows that
the Trezor and Keepkey are open platforms, whereas Ledger devices are closed hardware.
Table 5.2 reinforces this impression, because the Ledger wallets are the only ones utilizing
the concept of a secure element, which has to be closed-source by design.

This can also be seen by reviewing the safety measures and attestations further. To
check that nothing has been manipulated, Trezor and Keepkey use hologram stickers
at various points. Ledger however, state that they do not need any stickers or sealings
for their device, because the software integrity check unleashing the secure element is
more sufficient (see Table 5.3). This secure element approach can also be seen in Table
5.4, because Ledger devices do not use special tamperresistant casings. Table 5.5 shows
that every device needs to verify the bootloader to stop malicious code loading. But
also the firmware verification is critical, as seen in Table 5.6. The firmware also protects
the private key access because all wallets can use a passphrase (which enables access to
multiple wallets in case somebody forces the owner to reveal a password) and a PIN.
Also, the transactions have to be confirmed on the device (see Table 5.7). All those
attestations have been tested after unpacking and initializing the devices.

However, this study also showed that there are still flaws in the security design of hardware
wallets. Table 5.8 shows that there are multiple attack vectors available, and a lot of
attacks were already possible. Comparing the different attestations shows that a lot of
effort was done to prevent product manipulation such as malicious code execution on the
device and regulating access to the private key. Nonetheless, there are no attestation
methods to verify that the hardware can be trusted, which leads us to the proof of
concept in Section 6.

22

CHAPTER 6
Proof of Concept

Because the wallets do not verify the hardware, it was chosen to create a supply chain
attack. After getting knowledge about the most prominent wallets, the decision to create
a fake wallet for the Trezor Model One was made. The main reason was the openess of
the platform, because there is no secure element and everything of the Trezor One is
open source, including the wallet website and hardware.

6.1 Configuring the USB Armory
The USB armory [5] is a single-board computer. The boot process involves a micro SD
card, similar to the Raspberry Pi [43], and a Debian-like Linux can be flashed on the
card. However, it supports, unlike a Raspberry Pi, no external peripherals, like a monitor
or a network interface. After the USB-stick like device contains a micro SD card with an
operating system and is connected to a host, it automatically boots and loads a Linux
driver module called "g_ether".
This module is build on top of the Linux-USB stack and implements a Ethernet USB
gadget. A USB gadget driver [44] gives the system the functionality of a USB device (and
not a USB host), which is also a desired behaviour to emulate a Trezor USB device. On
the host side, Windows PCs for example can use a Technology called RNDIS (Remote
Network Driver Interface Specification) [45] to use this Ethernet gadget to emulate a
network interface in order to communicate with the device.

6.2 Sniffing the USB Protocol
So with its initial configuration, we can connect with the Debian of the USB armory
via ssh and the emulated network interface (over the g_ether module). But before it is
possible to implement the Trezor protocol, it must first be examined further, as well as
identify the USB endpoints provided by the Trezor. For this, the programs Wireshark

23

6. Proof of Concept

and UsbTreeView were used.
Wireshark [46] is a program to capture not only network but also USB traffic (via
"extcap"). Different interactions with the original Trezor (like entering a PIN, doing
a transaction, just connecting it to the host) were recorded and then analyzed. With
Wireshark, it was not only possible to capture the Trezor-specific protocol, but also the
sent descriptors (see Figure 6.1).

Figure 6.1: Wireshark shows all the USB communication, like this USB string descriptor
describing one interface as the "TREZOR Interface".

UsbTreeView [47], on the other hand, was used to identify all static information about the
Trezor, like the magic numbers and interfaces. The program can print a comprehensive
report about a USB device. Also, the required endpoints which were already visible in
the Wireshark capture could be verified. They are illustrated as a UML communication
diagram in Figure 6.2. Endpoint 0 is used to send the descriptors, while the U2FInterface
enables two-factor authentication (this interface is not needed in this work).

The descriptor information is required by the Trezor Bridge to filter for wallets connected
to the host. This bridge, which is a userspace driver, is used by the Trezor web wallet (over
a web server from the Trezor Bridge) to access the hardware wallet. The requirements
for a USB device to look like a Trezor could also be reviewed directly in the source
code of the Trezor Bridge, which is written in the programming language Go [48]. This
communication is shown clearly within Figure 6.3.

Regarding the protocol, when plugging in the Trezor, all of the USB descriptors are sent
over endpoint 0. Because the software seems to be polling the Trezor every 0.5s, this
"keepalive" sequence in Figure 6.4 is going on over endpoint 0. In fact, those messages
are just USB descriptor requests and this behaviour is implemented automatically by the
Linux USB stack. However, at the same time, the Trezor protocol is sent with HID over
the TREZOR Interface endpoint (see Figure 6.3). When the Trezor web wallet is started
and the Trezor bridge sees a "valid" Trezor connected, a preamble is sent first, as seen

24

6.3. Implementation of the Fake Wallet

Figure 6.2: An overview of the needed USB endpoints which are behind the virtual
channels.

Figure 6.3: On the host side, these two important software components are interacting.

in Figure 6.5. After this, the PIN is sent (see Figure 6.6) and after that, all the other
messages like the public key or a transaction signing request.

6.3 Implementation of the Fake Wallet

After we made those diagrams and understood the collected data, the investigation on
how to implement the protocol could begin. The first thing to know is that the g_ether
module is a legacy module and does not support multiple different functions. In Section
4.2 it was mentioned that it might be useful to simultaneously run a virtual network
interface and the Trezor emulation, but those are two different USB functions. Now the
question is, how this can be etablished. The g_ether module must be unloaded and
another module which supports multiple functions is needed. But in fact, we do not
have to write an own kernel module. The Linux USB gadget framework grew historically
and in late 2003, it introduced GadgetFS, which enabled the development of userspace
gadget drivers [44]. In 2010, FunctionFS was added, which basically resembles a rewrite
of GadgetFS to support the combination of multiple userspace gadget functions into a
single composite gadget. Finally, with Linux 3.11, ConfigFS was created, which allowed
an easy interface based of file commands to compose such a composite gadget at runtime
[49]. E.g. new functions can be created with ConfigFS by just creating a file with the
correct name in the file system.
So, the choice was to combine several functions with ConfigFS. For this, the kernel module
libcomposite had to be loaded. A shell script (see Listing 6.1) was created to initialize

25

6. Proof of Concept

Figure 6.4: The "keepalive" messages.

Figure 6.5: The "preamble" messages over the TREZOR Interface (two times).

the USB gadget and all the functions via ConfigFS. There was also the possibility to use
libusbg which is a C library for ConfigFS, but because it did not make the configuration
easier, it was not used. With ConfigFS, the composite gadget was customized to send
the descriptors extracted by UsbTreeView, like setting the USB gadget’s manufacturer to
the string "SatoshiLabs" and the product string to "TREZOR". Now, the composable
ethernet function could be added [50]. However, for the Trezor protocol, it was not

26

6.3. Implementation of the Fake Wallet

Figure 6.6: The PIN messages over the TREZOR Interface after the preamble. Note that
the PIN is sent in plaintext.

necessary to create a own function with FunctionFS, because after further analysis of the
Wireshark capture, it was clearly evident that the Trezor-specific protocol was build on
top of the USB HID protocol.

Listing 6.1: Shell script to configure the USB emulation.
#!/ bin / bash −e
{
echo " s t a r t i n g ␣usb␣ emulation "
remove s i n g l e e t he r module
modprobe −r g_ether
s l e e p 1
i n s e r t g a d g e t f s and f u n c t i o n f s module
modprobe l i b compos i t e
#modprobe g_f f s f u n c t i o n s=rnd i s
modprobe usb_f_fs
modprobe usb_f_hid
crea t e new gadge t
cd / sys / ke rne l / c on f i g /usb_gadget/
mkdir g && cd g
vid , p id
echo 0x534c > idVendor # Satosh iLabs
echo 0x0001 > idProduct #
echo 0x0100 > bcdDevice # v1 . 0 . 0
echo 0x0200 > bcdUSB # USB 2.0

27

6. Proof of Concept

m u l t i f u n c t i on gadge t
echo 0x00 > bDeviceClass
echo 0x00 > bDeviceSubClass
echo 0x00 > bDeviceProtoco l
e n g l i s h s t r i n g s
mkdir −p s t r i n g s /0x409
echo "BA386EE5B17B4DCEDF8BB89B" > s t r i n g s /0x409/ ser ia lnumber
echo " Satosh i ␣Labs " > s t r i n g s /0x409/manufacturer
echo "TREZOR" > s t r i n g s /0x409/product
− genera l c o n f i g
mkdir −p c on f i g s /c . 1
echo 250 > con f i g s /c . 1/MaxPower
−− hid
#mkdir −p f u n c t i o n s / f f s . my_func_name
#mkdir −p /tmp/mount_point
mkdir −p func t i on s / rnd i s . usb2 # network
mkdir f unc t i on s /hid . usb0
echo 0 > func t i on s /hid . usb0/ p ro to co l
echo 0 > func t i on s /hid . usb0/ subc l a s s
echo 8 > func t i on s /hid . usb0/ report_length
cat /home/USB armory/ r1 . hex > func t i on s /hid . usb0/ report_desc
mkdir f unc t i on s /hid . usb1
echo 0 > func t i on s /hid . usb1/ p ro to co l
echo 0 > func t i on s /hid . usb1/ subc l a s s
echo 8 > func t i on s /hid . usb1/ report_length
cat /home/USB armory/ r2 . hex > func t i on s /hid . usb1/ report_desc
#mount my_func_name −t f u n c t i o n f s /tmp/mount_point
#/home/USB armory/ t r e z o r /tmp/mount_point &
#ln −s f u n c t i o n s / f f s . my_func_name c o n f i g s /c .1/
ln −s f unc t i on s / rnd i s . usb2 c on f i g s /c . 1/
ln −s f unc t i on s /hid . usb0 c on f i g s /c . 1
ln −s f unc t i on s /hid . usb1 c on f i g s /c . 1
−−
OS d e s c r i p t o r s
echo 1 > os_desc/use
echo 0xcd > os_desc/b_vendor_code
echo MSFT100 > os_desc/qw_sign
echo RNDIS > \
func t i on s / rnd i s . usb2/os_desc/ i n t e r f a c e . rnd i s / compatible_id
echo 5162001 > \
func t i on s / rnd i s . usb2/os_desc/ i n t e r f a c e . rnd i s / sub_compatible_id
ln −s c o n f i g s /c . 1 os_desc
#echo " b e f o r e "

28

6.3. Implementation of the Fake Wallet

#l s /dev | grep hid
udevadm s e t t l e −t 5 | | :
l s / sys / c l a s s /udc/ > UDC
echo " ready "
l s /dev | grep hid

compi le the message loop
#gcc /home/USB armory/ t r e z o r . c −o /home/USB armory/ t r e z o r
#echo " s t a r t i n g t r e z o r "
#/home/USB armory/ t r e z o r
#echo " f i n "
} > log . txt

HID can be added just as another function and offers a easy interface in form of a device
driver file hidgX [51] which can be read and written after initialization. But before the
program which used the HID protocol via the device file could be implemented, the USB
HID report descriptor had to be configured. As mentioned in Section 2.4.3, HID report
descriptors contain specific information how the HID device sends its data, especially
in which format. To retrieve the Trezor One report descriptors, Usbhid-dump [52] was
used. The obtained binary descriptors could also be configured via ConfigFS. With this,
the Trezor bridge finally accepted the USB armory as a Trezor (see Figure 6.7), but the
Trezor web wallet did not see any wallet at all.

Figure 6.7: The Trezor Bridge believing a Trezor is connected.

This was because the web wallet makes use of the bridge and therefore of the protocol
build on HID, which was not implemented at this point. So the last task was to implement
the Trezor-specific protocol over HID. The successful setup of the HID kernel module in
the shell script created the hidg0 device file. Now, a C program to implement the Trezor
protocol could be developed. This program can connect to the hidg0 file and interact
with it via the file commands of the standard library. With the Wireshark capture,

29

6. Proof of Concept

identifiying the basic Trezor messages was possible.
Because all requests are issued by the web wallet via the USB host, the C program
developed is basically just a message dispatcher (see Listing 6.2), which processes all
retreived messages in a loop and then sends the answer. The preamble and PIN messages
were the first part of the protocol which was implemented.

Listing 6.2: C code to process the HID messages.
while (1) {

read_msg (bu f f e r , fd) ;
switch (ident i fy_packet (bu f f e r)) {

case IDENTIFY_ME:
p r i n t f ("GOT␣IDENTIFY␣ME\n") ;
handle_identify_me (bu f f e r , fd) ;
break ;
case TESTNET:
p r i n t f ("GOT␣TESTNET\n") ;
handle_testnet (bu f f e r , fd) ;
break ;
case TESTNET_RECV:
p r i n t f ("GOT␣TESTNET␣RECV\n") ;
handle_testnet_recv (bu f f e r , fd) ;
break ;
case OK_TESTNET:
p r i n t f ("GOT␣_OK_␣TESTNET\n") ;
handle_ok_testnet (bu f f e r , fd) ;
break ;
case OK_SEND:
p r i n t f ("GOT␣_OK_␣SEND\n") ;
handle_ok_send (bu f f e r , fd) ;
break ;
case OK_SEND_ADDR:
p r i n t f ("GOT␣_OK_␣SEND␣ADDR\n") ;
handle_ok_send_addr (bu f f e r , fd) ;
handle_ok_send_confirm (bu f f e r , fd) ;
break ;
case COMMAND1:
p r i n t f ("GOT␣COMMAND1\n") ;
handle_command1 (bu f f e r , fd) ;
break ;
// . . o ther messages
case COMMAND8:
p r i n t f ("GOT␣COMMAND8\n") ;
handle_command8 (bu f f e r , fd) ;
break ;

30

6.3. Implementation of the Fake Wallet

case SEND:
p r i n t f ("GOT␣SEND\n") ;
handle_send (bu f f e r , fd) ;
break ;
case NO_ANS:
p r i n t f ("GOT␣NO␣ANS\n") ;
p r i n t f ("EXPECT␣IDENTIFY␣ME␣NEXT\n") ;
break ;

default :
p r i n t f ("CANNOT␣IDENTIFY␣COMMAND\n") ;
p r in t_bu f f e r (bu f f e r , REPORT_SIZE) ;
// t r i g g e r s error msg wi th expec ted oxpub
write_msg (command1_1 , fd) ;
write_msg (command1_2 , fd) ;
write_msg (command1_3 , fd) ;
write_msg (command1_4 , fd) ;
break ;

}
}

After this, the Trezor software fully recognized the device as a Trezor (see Figure 6.8).
Finally, the messages to get the account and public key were integrated. Also the
initialization behaviour could be emulated, so the victim thinks that his new wallet was
not preinitialized.

Figure 6.8: The Trezor Wallet showing the account which the USB armory emulates.

31

6. Proof of Concept

6.4 Final Attack Vector
The attack with this fake wallet could happen with a supply chain attack. The victim
buys the wallet by a reseller, thinking he bought the original one. It is necessary that
the victim generates a new wallet, because entering a recovery seed is not addressed in
this thesis. If the victim trusts the hardware, let the wallet generate a new e.g. Bitcoin
address and wants to make a transaction, he will notice that (like with an original wallet)
he first has to "fill" the wallet with money, because its initial balance is zero. Now if the
victim wants to pay money on his "wallet", the fake wallet sends the malicious address
to the web wallet and in the end, the attacker gets the money. Especially with Bitcoin,
transactions are final when properly propagated.

6.5 Discussion
On the one hand, it was shown again that USB is a problematic interface, because it
is known for the lack of security checks. Attacks like using an USB stick to emulate a
keyboard and type critical commands are particulary easy to perform. The descriptors
of the Trezor could be extracted without any problems, and faking those descriptors was
enough to let the Trezor Bridge believe a real Trezor was connected. The software did
not care about the virtual network interface on the device or the fact that not all string
descriptors fully matched the original Trezor.

On the other hand, this proof of concept could demonstrate that the software trusts the
hardware too much. The Trezor Wallet only needed a working protocol response, and
the Trezor messages were not encrypted and could just be replayed by sending the binary
capture of Wireshark. All for this proof of concept necessary Trezor messages could be
fully implemented and if all the other messages like device name configuration etc. are
emulated as well (which is technically possible), a victim is not able to distinguish the
behaviour of the software between the emulation and a real Trezor.

32

CHAPTER 7
Future Work

The security feature market review’s main purpose was to gave a good entry point in
cryptocurrency hardware wallet security. As new wallets are coming to the market and
new attestation methods are developed, one has to observe the future development trends.
Especially the vulnerability classifcation is a snapshot in time, as new vulnerabilities are
found on a regular basis, and the classification has to be updated with those. But it can
be used to classify further attacks with this scheme.

The specific proof of concept introduced in this thesis could be improved in multiple
ways. Firstly, it is currently needed to open a remote shell and start the script in order
to start the Trezor One emulation due to debugging purposes. In a real attack, the
script should be started after boot. Secondly, the transactions were only tested with
the Bitcoin Testnet, so the software has to be adapted to the real Bitcoin network. The
RNDIS interface must also be removed. Finally, in order to seem like a Trezor, one must
change the appearance of the USB device to look like to original hardware, including
the characteristic LCD display. However, this might not be a lot of work for a serious
attacker. In the end, there is a good chance that multiple other wallets are also vulnerable
to this mimicking attack.

33

CHAPTER 8
Conclusion

The first part with the security feature market review gave an overview about five
prominent hardware wallets, their characteristics and their weaknesses. It is important
to differentiate how the different vendors follow particularly different security approaches,
all with their personal subtleties. Especially the difference openess vs. secure element
usage stood out. There are multiple attestations available, however, they do not cover
every situation, e.g. faking the hardware. It also showed existing attacks, which were
classified with a layered approach. This gave a good understanding of important attack
vectors which must be considered with hardware wallets.

The second part which presented the fake wallet attack showed that there are no
attestations for the Trezor One to verify that the hardware is genuine. Therefore, it
can be used as an attack vector. It was possible to emulate the device from the USB
descriptors to the Trezor messages and create an attack scenario. It showed how this
emulation was possible, from choosing the hardware to reverse engineering the messages.
This proved that such an attack can be created with managable time and resources, and
there are still missing attestations for devices like the Trezor One.

35

Bibliography

[1] N. Satoshi, “Bitcoin: A Peer-to-Peer Electronic Cash System.” https://
bitcoin.org/bitcoin.pdf, 2008. Accessed: 2018-09-21.

[2] B. Marr, “A Short History Of Bitcoin And Crypto Currency Everyone Should
Read.” https://www.forbes.com/sites/bernardmarr/2017/12/06/
a-short-history-of-bitcoin-and-crypto-currency-everyone-
should-read/#b794c773f279, 2007. Accessed: 2018-09-21.

[3] N. Marinoff, “Cryptocurrency Growing in Popularity: Especially Among Young
People.” https://blockonomi.com/cryptocurrency-growth-young-
people/, 2018. Accessed: 2019-02-18.

[4] Ledger, “Hardware wallets - Securing your crypto assets.” https://
www.ledger.com/, 2018. Accessed: 2018-09-21.

[5] I. Path, “Open Source Flash-Drive Sized Computer.” https://
inversepath.com/usbarmory.html, 2018. Accessed: 2018-09-21.

[6] Stellabelle, “Cold Wallet Vs. Hot Wallet: What’s The Difference?.”
https://medium.com/@stellabelle/cold-wallet-vs-hot-wallet-
whats-the-difference-a00d872aa6b1, 2017. Accessed: 2019-01-30.

[7] Strongcoin.com, “Highly Secure Bitcoin Wallet - Strongcoin.” https://
strongcoin.com/, 2019. Accessed: 2019-01-30.

[8] S. Labs, “Pre-order your new TREZOR model T!.” https://blog.trezor.io/
pre-order-your-new-trezor-model-t-cf2a3426cf03, 2019. Accessed:
2019-01-30.

[9] I. Fovino, “Secure Smart Embedded Devices, Platforms and Applications,” 2014.
ISBN: 978-1-4614-7915-4.

[10] commoncriteriaportal.org, “The Common Criteria.” https://
www.commoncriteriaportal.org/, 2018. Accessed: 2019-02-22.

37

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://www.forbes.com/sites/bernardmarr/2017/12/06/a-short-history-of-bitcoin-and-crypto-currency-everyone-should-read/#b794c773f279
https://www.forbes.com/sites/bernardmarr/2017/12/06/a-short-history-of-bitcoin-and-crypto-currency-everyone-should-read/#b794c773f279
https://www.forbes.com/sites/bernardmarr/2017/12/06/a-short-history-of-bitcoin-and-crypto-currency-everyone-should-read/#b794c773f279
https://blockonomi.com/cryptocurrency-growth-young-people/
https://blockonomi.com/cryptocurrency-growth-young-people/
https://www.ledger.com/
https://www.ledger.com/
https://inversepath.com/usbarmory.html
https://inversepath.com/usbarmory.html
https://medium.com/@stellabelle/cold-wallet-vs-hot-wallet-whats-the-difference-a00d872aa6b1
https://medium.com/@stellabelle/cold-wallet-vs-hot-wallet-whats-the-difference-a00d872aa6b1
https://strongcoin.com/
https://strongcoin.com/
https://blog.trezor.io/pre-order-your-new-trezor-model-t-cf2a3426cf03
https://blog.trezor.io/pre-order-your-new-trezor-model-t-cf2a3426cf03
https://www.commoncriteriaportal.org/
https://www.commoncriteriaportal.org/

[11] T. Abera, N. Asokan, L. Davi, F. Koushanfar, A. Paverd, A.-R. Sadeghi, and
G. Tsudik, “Things, trouble, trust: on building trust in iot systems,” in Proceedings
of the 53rd Annual Design Automation Conference, p. 121, ACM, 2016.

[12] K. Eldefrawy, N. Rattanavipanon, and G. Tsudik, “Hydra: Hybrid design for remote
attestation (using a formally verified microkernel),” in Proceedings of the 10th ACM
Conference on Security and Privacy in wireless and Mobile Networks, pp. 99–110,
ACM, 2017.

[13] M. Palatinus, “Mnemonic code for generating deterministic keys.” https://
github.com/bitcoin/bips/blob/master/bip-0039.mediawiki, 2013. Ac-
cessed: 2019-02-16.

[14] C. Peacock, “USB in a NutShell.” https://www.beyondlogic.org/
usbnutshell/usb1.shtml, 2018. Accessed: 2019-01-26.

[15] T. Roth, D. Nedospasov and J. Datko, “wallet.fail: Hacking the most popu-
lar cryptocurrency hardware wallets .” https://media.ccc.de/v/35c3-9563-
wallet_fail#t=113, 2018. Accessed: 2019-02-28.

[16] A. Gkaniatsou, M. Arapinis, and A. Kiayias, “Low-level attacks in bitcoin wallets,”
in International Conference on Information Security, pp. 233–253, Springer, 2017.

[17] J. Datko, C. Quartier, and K. Belyayev, “Breaking bitcoin hardware wallets,” DEF
CON 2017, 2017. Talk: https://www.youtube.com/watch?v=hAtoRrxFBWs.

[18] C. Decker and R. Wattenhofer, “Bitcoin transaction malleability and mtgox,” in
European Symposium on Research in Computer Security, pp. 313–326, Springer,
2014.

[19] M. Rosenfeld, “Analysis of hashrate-based double spending,” arXiv preprint
arXiv:1402.2009, 2014.

[20] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum smart
contracts.,” IACR Cryptology ePrint Archive, vol. 2016, p. 1007, 2016.

[21] M. Dalton, H. Kannan, and C. Kozyrakis, “Deconstructing hardware architectures
for security,” in 5th Annual Workshop on Duplicating, Deconstructing, and Debunking
(WDDD) at ISCA, Citeseer, 2006.

[22] M. Roland, J. Langer, and J. Scharinger, “Practical attack scenarios on secure
element-enabled mobile devices,” in 2012 4th International Workshop on Near Field
Communication, pp. 19–24, IEEE, 2012.

[23] allthingsdecentral, “Wallet Overview.” https://allthingsdecentral.com/
pages/compare-hardware-wallets, 2018. Accessed: 2018-10-14.

38

https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://www.beyondlogic.org/usbnutshell/usb1.shtml
https://www.beyondlogic.org/usbnutshell/usb1.shtml
https://media.ccc.de/v/35c3-9563-wallet_fail#t=113
https://media.ccc.de/v/35c3-9563-wallet_fail#t=113
https://www.youtube.com/watch?v=hAtoRrxFBWs
https://allthingsdecentral.com/pages/compare-hardware-wallets
https://allthingsdecentral.com/pages/compare-hardware-wallets

[24] K. Kreder, “Hardware Wallet Vulnerabilities.” https://blog.gridplus.io/
hardware-wallet-vulnerabilities-f20688361b88, 2018. Accessed: 2018-
10-14.

[25] SatoshiLabs, “Trezor Security.” https://trezor.io/security/, 2018. Accessed:
2018-10-13.

[26] Keepkey, “Keepkey Security FAQ.” https://www.keepkey.com/keepkey/faq/
security/, 2018. Accessed: 2018-10-14.

[27] Keepkey, “KeepKey under the hood.” https://medium.com/@AussieHash/
keepkey-under-the-hood-3beac31e1064, 2018. Accessed: 2018-10-17.

[28] Ledger, “How to protect hardware wallets against tampering.” https:
//www.ledger.fr/2015/03/27/how-to-protect-hardware-wallets-
against-tampering/, 2015. Accessed: 2018-10-14.

[29] Ledger, “Check hardware integrity.” https://support.ledger.com/hc/en-us/
articles/115005321449-Check-hardware-integrity, 2019. Accessed:
2019-02-28.

[30] SatoshiLabs, “User manual:Running a local instance of
Trezor Wallet.” https://wiki.trezor.io/User_manual:
Running_a_local_instance_of_Trezor_Wallet, 2019. Accessed: 2019-02-
26.

[31] J. Hoenicke, “Trezor Power Analysis.” https://jochen-hoenicke.de/trezor-
power-analysis/, 2018. Accessed: 2018-10-14.

[32] D. Zero404Cool, “Frozen Trezor - Data Remanence Attacks!.” https:
//medium.com/@Zero404Cool/frozen-trezor-data-remanence-
attacks-de4d70c9ee8c, 2017. Accessed: 2018-10-14.

[33] U. Soul, “How To Hack A Trezor or KeepKey Hardware Bitcoin Wal-
let - Plus Make Your Own Open Sourced Hardware Wallet!.” https:
//steemit.com/technology/@ura-soul/how-to-hack-a-trezor-
or-keepkey-hardware-bitcoin-wallet-plus-make-your-own-open-
sourced-hardware-wallet, 2018. Accessed: 2018-10-14.

[34] S. Rashid, “Breaking the Ledger Security Model.” https://saleemrashid.com/
2018/03/20/breaking-ledger-security-model/, 2018. Accessed: 2018-
10-14.

[35] Anonymous, “Ledger Receive Address Attack.” https://www.docdroid.net/
Jug5LX3/ledger-receive-address-attack.pdf, 2018. Accessed: 2018-10-
14.

39

https://blog.gridplus.io/hardware-wallet-vulnerabilities-f20688361b88
https://blog.gridplus.io/hardware-wallet-vulnerabilities-f20688361b88
https://trezor.io/security/
https://www.keepkey.com/keepkey/faq/security/
https://www.keepkey.com/keepkey/faq/security/
https://medium.com/@AussieHash/keepkey-under-the-hood-3beac31e1064
https://medium.com/@AussieHash/keepkey-under-the-hood-3beac31e1064
https://www.ledger.fr/2015/03/27/how-to-protect-hardware-wallets-against-tampering/
https://www.ledger.fr/2015/03/27/how-to-protect-hardware-wallets-against-tampering/
https://www.ledger.fr/2015/03/27/how-to-protect-hardware-wallets-against-tampering/
https://support.ledger.com/hc/en-us/articles/115005321449-Check-hardware-integrity
https://support.ledger.com/hc/en-us/articles/115005321449-Check-hardware-integrity
https://wiki.trezor.io/User_manual:Running_a_local_instance_of_Trezor_Wallet
https://wiki.trezor.io/User_manual:Running_a_local_instance_of_Trezor_Wallet
https://jochen-hoenicke.de/trezor-power-analysis/
https://jochen-hoenicke.de/trezor-power-analysis/
https://medium.com/@Zero404Cool/frozen-trezor-data-remanence-attacks-de4d70c9ee8c
https://medium.com/@Zero404Cool/frozen-trezor-data-remanence-attacks-de4d70c9ee8c
https://medium.com/@Zero404Cool/frozen-trezor-data-remanence-attacks-de4d70c9ee8c
https://steemit.com/technology/@ura-soul/how-to-hack-a-trezor-or-keepkey-hardware-bitcoin-wallet-plus-make-your-own-open-sourced-hardware-wallet
https://steemit.com/technology/@ura-soul/how-to-hack-a-trezor-or-keepkey-hardware-bitcoin-wallet-plus-make-your-own-open-sourced-hardware-wallet
https://steemit.com/technology/@ura-soul/how-to-hack-a-trezor-or-keepkey-hardware-bitcoin-wallet-plus-make-your-own-open-sourced-hardware-wallet
https://steemit.com/technology/@ura-soul/how-to-hack-a-trezor-or-keepkey-hardware-bitcoin-wallet-plus-make-your-own-open-sourced-hardware-wallet
https://saleemrashid.com/2018/03/20/breaking-ledger-security-model/
https://saleemrashid.com/2018/03/20/breaking-ledger-security-model/
https://www.docdroid.net/Jug5LX3/ledger-receive-address-attack.pdf
https://www.docdroid.net/Jug5LX3/ledger-receive-address-attack.pdf

[36] Keepkey, “Security Updates & Responsible Disclosure.” https://
www.keepkey.com/2018/03/09/security-updates-responsible-
disclosure/, 2018. Accessed: 2018-10-16.

[37] SatoshiLabs, “TREZOR One: Firmware Update 1.6.1.” https://
blog.trezor.io/trezor-one-firmware-update-1-6-1-eecd0534ab95,
2018. Accessed: 2019-02-27.

[38] SatoshiLabs, “Malicious ScriptSig in transaction.” https://trezor.io/
security/, 2014. Accessed: 2019-02-27.

[39] SatoshiLabs, “Details about the security updates in Trezor One firmware 1.6.2.”
https://blog.trezor.io/details-about-the-security-updates-in-
trezor-one-firmware-1-6-2-a3b25b668e98, 2018. Accessed: 2019-02-27.

[40] SatoshiLabs, “SpendMultisig malicious change in transaction.” https://
trezor.io/security/, 2015. Accessed: 2019-02-27.

[41] Ledger, “Firmware 1.4: deep dive into three vulnerabilities which have been
fixed.” https://www.ledger.fr/2018/03/20/firmware-1-4-deep-dive-
security-fixes/, 2018. Accessed: 2019-02-27.

[42] Keepkey, “https://info.shapeshift.io/blog/2018/03/21/security-update-release-notes-
for-v5-1-0/.” https://blog.trezor.io/trezor-one-firmware-update-1-
6-1-eecd0534ab95, 2018. Accessed: 2019-02-27.

[43] R. P. Foundation, “Raspberry Pi.” https://www.raspberrypi.org/, 2019. Ac-
cessed: 2019-02-12.

[44] T. kernel development community, “USB Gadget API for Linux.” https:
//www.kernel.org/doc/html/v4.16/driver-api/usb/gadget.html, 2019.
Accessed: 2019-02-12.

[45] Microsoft, “Overview of Remote NDIS (RNDIS).” https://
docs.microsoft.com/en-us/windows-hardware/drivers/network/
overview-of-remote-ndis--rndis-, 2019. Accessed: 2019-02-12.

[46] W. Foundation, “About Wireshark.” https://www.wireshark.org/, 2019. Ac-
cessed: 2019-02-12.

[47] U. Sieber, “USB Device Tree Viewer V3.3.2.” https://www.uwe-sieber.de/
usbtreeview_e.html, 2019. Accessed: 2019-02-12.

[48] SatoshiLabs, “TREZOR Communication Daemon (written in Go) .” https://
github.com/trezor/trezord-go, 2019. Accessed: 2019-02-12.

40

https://www.keepkey.com/2018/03/09/security-updates-responsible-disclosure/
https://www.keepkey.com/2018/03/09/security-updates-responsible-disclosure/
https://www.keepkey.com/2018/03/09/security-updates-responsible-disclosure/
https://blog.trezor.io/trezor-one-firmware-update-1-6-1-eecd0534ab95
https://blog.trezor.io/trezor-one-firmware-update-1-6-1-eecd0534ab95
https://trezor.io/security/
https://trezor.io/security/
https://blog.trezor.io/details-about-the-security-updates-in-trezor-one-firmware-1-6-2-a3b25b668e98
https://blog.trezor.io/details-about-the-security-updates-in-trezor-one-firmware-1-6-2-a3b25b668e98
https://trezor.io/security/
https://trezor.io/security/
https://www.ledger.fr/2018/03/20/firmware-1-4-deep-dive-security-fixes/
https://www.ledger.fr/2018/03/20/firmware-1-4-deep-dive-security-fixes/
https://blog.trezor.io/trezor-one-firmware-update-1-6-1-eecd0534ab95
https://blog.trezor.io/trezor-one-firmware-update-1-6-1-eecd0534ab95
https://www.raspberrypi.org/
https://www.kernel.org/doc/html/v4.16/driver-api/usb/gadget.html
https://www.kernel.org/doc/html/v4.16/driver-api/usb/gadget.html
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/overview-of-remote-ndis--rndis-
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/overview-of-remote-ndis--rndis-
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/overview-of-remote-ndis--rndis-
https://www.wireshark.org/
https://www.uwe-sieber.de/usbtreeview_e.html
https://www.uwe-sieber.de/usbtreeview_e.html
https://github.com/trezor/trezord-go
https://github.com/trezor/trezord-go

[49] K. Opasiak, “Tame the USB gadgetstalkative
beast.” https://elinux.org/images/1/14/Opasiak-
-tame_the_usb_gadgets_talkative_beast.pdf, 2014. Accessed: 2019-02-
12.

[50] A. Pietrasiewicz, “USB/Linux USB Layers/Configfs Composite Gadget/Usage
eq. to g ether.ko.” https://wiki.tizen.org/USB/Linux_USB_Layers/
Configfs_Composite_Gadget/Usage_eq._to_g_ether.ko, 2016. Accessed:
2019-02-12.

[51] kernel.org, “Linux USB HID gadget driver.” https://www.kernel.org/doc/
Documentation/usb/gadget_hid.txt, 2017. Accessed: 2019-02-12.

[52] DIGImend, “USB HID device dumping utility .” https://github.com/
DIGImend/usbhid-dump, 2019. Accessed: 2019-02-12.

41

https://elinux.org/images/1/14/Opasiak--tame_the_usb_gadgets_talkative_beast.pdf
https://elinux.org/images/1/14/Opasiak--tame_the_usb_gadgets_talkative_beast.pdf
https://wiki.tizen.org/USB/Linux_USB_Layers/Configfs_Composite_Gadget/Usage_eq._to_g_ether.ko
https://wiki.tizen.org/USB/Linux_USB_Layers/Configfs_Composite_Gadget/Usage_eq._to_g_ether.ko
https://www.kernel.org/doc/Documentation/usb/gadget_hid.txt
https://www.kernel.org/doc/Documentation/usb/gadget_hid.txt
https://github.com/DIGImend/usbhid-dump
https://github.com/DIGImend/usbhid-dump

	Kurzfassung
	Abstract
	Contents
	Introduction
	Background
	Cryptocurrency Wallets
	Hardware Security Basics
	Hardware Wallets
	Universal Serial Bus (USB)

	Related Work
	Methology
	Methology of the Security Feature Review
	Methology of the Proof of Concept

	Market Review of Hardware Wallet Security Features
	General Overview
	Attestation Methods
	Wallet Initialization
	Existing Vulnerability Classification
	Discussion

	Proof of Concept
	Configuring the USB Armory
	Sniffing the USB Protocol
	Implementation of the Fake Wallet
	Final Attack Vector
	Discussion

	Future Work
	Conclusion
	Bibliography

